دورية أكاديمية

Test–retest reliability of freesurfer measurements within and between sites: Effects of visual approval process

التفاصيل البيبلوغرافية
العنوان: Test–retest reliability of freesurfer measurements within and between sites: Effects of visual approval process
المؤلفون: Iscan, Zafer, Jin, Tony B., Kendrick, Alexandria, Szeglin, Bryan, Lu, Hanzhang, Trivedi, Madhukar, Fava, Maurizio, McGrath, Patrick J., Weissman, Myrna, Kurian, Benji T., Adams, Phillip, Weyandt, Sarah, Toups, Marisa, Carmody, Thomas, McInnis, Melvin, Cusin, Cristina, Cooper, Crystal, Oquendo, Maria A., Parsey, Ramin V., DeLorenzo, Christine
بيانات النشر: Wiley Periodicals, Inc.
Elsevier
سنة النشر: 2015
المجموعة: University of Michigan: Deep Blue
مصطلحات موضوعية: FreeSurfer, multisite MRI, cerebral cortical thickness, cerebral cortical volume, cerebral cortical surface area, test–retest reliability, Kinesiology and Sports, Neurosciences, Health Sciences
الوصف: In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test–retest reliability of FreeSurfer‐derived cortical measures in four groups of subjects—those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test–retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan–Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects’ results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI‐derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution. Hum Brain Mapp 36:3472–3485, 2015. © 2015 Wiley Periodicals, Inc. ; Peer Reviewed ; http://deepblue.lib.umich.edu/bitstream/2027.42/113142/1/hbm22856.pdfTest
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: unknown
تدمد: 1065-9471
1097-0193
العلاقة: Iscan, Zafer; Jin, Tony B.; Kendrick, Alexandria; Szeglin, Bryan; Lu, Hanzhang; Trivedi, Madhukar; Fava, Maurizio; McGrath, Patrick J.; Weissman, Myrna; Kurian, Benji T.; Adams, Phillip; Weyandt, Sarah; Toups, Marisa; Carmody, Thomas; McInnis, Melvin; Cusin, Cristina; Cooper, Crystal; Oquendo, Maria A.; Parsey, Ramin V.; DeLorenzo, Christine (2015). "Test–retest reliability of freesurfer measurements within and between sites: Effects of visual approval process." Human Brain Mapping 36(9): 3472-3485.; http://hdl.handle.net/2027.42/113142Test; Human Brain Mapping; Lyoo CH, Ryu YH, Lee MS ( 2011 ): Cerebral cortical areas in which thickness correlates with severity of motor deficits of Parkinson's disease. J Neurol 258: 1871 – 1876.; Dickerson BC, Fenstermacher E, Salat DH, Wolk DA, Maguire RP, Desikan R, Pacheco J, Quinn BT, Van der Kouwe A, Greve DN, Blacker D, Albert MS, Killiany RJ, Fischl B ( 2008 ): Detection of cortical thickness correlates of cognitive performance: Reliability across MRI scan sessions, scanners, and field strengths. NeuroImage 39: 10 – 18.; Eggert LD, Sommer J, Jansen A, Kircher T, Konrad C ( 2012 ): Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PloS One 7: e45081; Faul F, Erdfelder E, Lang AG, Buchner A ( 2007 ): G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39: 175 – 191.; Fischl B, Liu A, Dale AM ( 2001 ): Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20: 70 – 80.; Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM ( 2002 ): Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33: 341 – 355.; Fischl B, Sereno MI, Dale AM ( 1999 ): Cortical surface‐based analysis. II: Inflation, flattening, and a surface‐based coordinate system. NeuroImage 9: 195 – 207.; Frodl TS, Koutsouleris N, Bottlender R, Born C, Jager M, Scupin I, Reiser M, Moller HJ, Meisenzahl EM ( 2008 ): Depression‐related variation in brain morphology over 3 years: Effects of stress? Arch Gen Psychiatry 65: 1156 – 1165.; Gholipour A, Kehtarnavaz N, Briggs R, Devous M, Gopinath K ( 2007 ): Brain functional localization: A survey of image registration techniques. IEEE Trans Med Imaging 26: 427 – 451.; Ghosh SS, Kakunoori S, Augustinack J, Nieto‐Castanon A, Kovelman I, Gaab N, Christodoulou JA, Triantafyllou C, Gabrieli JD, Fischl B ( 2010 ): Evaluating the validity of volume‐based and surface‐based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. NeuroImage 53: 85 – 93.; Gudmundsson S, Runarsson TP, Sigurdsson S ( 2012 ): Test‐retest reliability and feature selection in physiological time series classification. Comput Methods Programs Biomed 105: 50 – 60.; Haines DE, Ard MD ( 2013 ): Fundamental Neuroscience for Basic and Clinical Applications, with STUDENT CONSULT Online Access,4: Fundamental Neuroscience for Basic and Clinical Applications. Saunders: Elsevier.; Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B ( 2006 ): Reliability of MRI‐derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. NeuroImage 32: 180 – 194.; Hermoye L, Annet L, Lemmerling P, Peeters F, Jamar F, Gianello P, Van Huffel S, Van Beers BE ( 2004 ): Calculation of the renal perfusion and glomerular filtration rate from the renal impulse response obtained with MRI. Magn Reson Med 51: 1017 – 1025.; Hinds O, Polimeni JR, Rajendran N, Balasubramanian M, Amunts K, Zilles K, Schwartz EL, Fischl B, Triantafyllou C ( 2009 ): Locating the functional and anatomical boundaries of human primary visual cortex. NeuroImage 46: 915 – 922.; Hutton C, Draganski B, Ashburner J, Weiskopf N ( 2009 ): A comparison between voxel‐based cortical thickness and voxel‐based morphometry in normal aging. NeuroImage 48: 371 – 380.; Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, Whitwell JL, Ward C, Dale AM, Felmlee JP, Gunter JL, Hill DLG, Killiany R, Schuff N, Fox‐Bosetti S, Lin C, Studholme C, DeCarli CS, Krueger G, Ward HA, Metzger GJ, Scott KT, Mallozzi R, Blezek D, Levy J, Debbins JP, Fleisher AS, Albert M, Green R, Bartzokis G, Glover G, Mugler J, Weiner MW ( 2008 ): The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging: JMRI 27: 685 – 691.; Jou RJ, Hardan AY, Keshavan MS ( 2005 ): Reduced cortical folding in individuals at high risk for schizophrenia: A pilot study. Schizophrenia Res 75: 309 – 313.; Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B, Pacheco J, Albert M, Killiany R, Blacker D, Maguire P, Rosas D, Makris N, Gollub R, Dale A, Dickerson BC, Fischl B ( 2009 ): MRI‐derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. NeuroImage 46: 177 – 192.; Jovicich J, Marizzoni M, Sala‐Llonch R, Bosch B, Bartres‐Faz D, Arnold J, Benninghoff J, Wiltfang J, Roccatagliata L, Nobili F, Hensch T, Trankner A, Schonknecht P, Leroy M, Lopes R, Bordet R, Chanoine V, Ranjeva JP, Didic M, Gros‐Dagnac H, Payoux P, Zoccatelli G, Alessandrini F, Beltramello A, Bargallo N, Blin O, Frisoni GB ( 2013 ): Brain morphometry reproducibility in multi‐center 3T MRI studies: A comparison of cross‐sectional and longitudinal segmentations. NeuroImage 83: 472 – 484.; Khan R, Zhang Q, Darayan S, Dhandapani S, Katyal S, Greene C, Bajaj C, Ress D ( 2011 ): Surface‐based analysis methods for high‐resolution functional magnetic resonance imaging. Graphical Models 73: 313 – 322.; Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV ( 2009 ): Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46: 786 – 802.; Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel H, Evans AC ( 2008 ): Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiol Aging 29: 23 – 30.; Liem F, Merillat S, Bezzola L, Hirsiger S, Philipp M, Madhyastha T, Jancke L ( 2015 ): Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly. NeuroImage 108: 95 – 109.; Mills KL, Tamnes CK ( 2014 ): Methods and considerations for longitudinal structural brain imaging analysis across development. Dev Cogn Neurosci 9C: 172 – 190.; Morelli JN, Runge VM, Ai F, Attenberger U, Vu L, Schmeets SH, Nitz WR, Kirsch JE ( 2011 ): An Image‐based approach to understanding the physics of MR artifacts. RadioGraphics 31: 849 – 866.; Pagonabarraga J, Corcuera‐Solano I, Vives‐Gilabert Y, Llebaria G, Garcia‐Sanchez C, Pascual‐Sedano B, Delfino M, Kulisevsky J, Gomez‐Anson B ( 2013 ): Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson's disease. PloS One 8: e54980; Peterson BS, Warner V, Bansal R, Zhu H, Hao X, Liu J, Durkin K, Adams PB, Wickramaratne P, Weissman MM ( 2009 ): Cortical thinning in persons at increased familial risk for major depression. Proc Natl Acad Sci USA 106: 6273 – 6278.; Reuter M, Schmansky NJ, Rosas HD, Fischl B ( 2012 ): Within‐subject template estimation for unbiased longitudinal image analysis. NeuroImage 61: 1402 – 1418.; Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, van der Kouwe A, Jenkins BG, Dale AM, Fischl B ( 2002 ): Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology 58: 695 – 701.; Schnack HG, van Haren NE, Brouwer RM, van Baal GC, Picchioni M, Weisbrod M, Sauer H, Cannon TD, Huttunen M, Lepage C, Collins DL, Evans A, Murray RM, Kahn RS, Hulshoff Pol HE ( 2010 ): Mapping reliability in multicenter MRI: Voxel‐based morphometry and cortical thickness. Hum Brain Mapp 31: 1967 – 1982.; Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB ( 1995 ): Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science (New York, N.Y.) 268: 889 – 893.; Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW, Walhovd KB ( 2014 ): Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change. J Neurosci 34: 8488 – 8498.; Talairach, J, Tournoux, P. ( 1988 ): Co‐planar Stereotaxic Atlas of the Human Brain: 3‐dimensional Proportional System. Thieme Medical Pub. New York.; Tosun D, Prince JL ( 2008 ): A geometry‐driven optical flow warping for spatial normalization of cortical surfaces. IEEE Trans Med Imaging 27: 1739 – 1753.; Trivedi, M, McGrath, PJ, Fava, M, Parsey, RV, Toups, M, Kurian, BT, Phillips, ML, Oquendo, M, Bruder, G, Pizzagalli, DA, Weyandt, S, Buckner, R, Adams, P, Carmody, T, Petkova, E, Weissman, MM ( 2013 ): The establishing moderators and biosignatures of antidepressant response for clinical care (EMBARC) study: Rationale, design and progress. Neuropsychopharmacology 38: T179.; Tu PC, Chen LF, Hsieh JC, Bai YM, Li CT, Su TP ( 2012 ): Regional cortical thinning in patients with major depressive disorder: A surface‐based morphometry study. Psychiatry Res 202: 206 – 213.; Tustison, NJ, Cook, PA, Klein, A, Song, G, Das, SR, Duda, JT, Kandel, BM, van Strien, N, Stone, JR, Gee, JC, Avants, BB ( 2014 ): Large‐scale evaluation of ANTs and FreeSurfer cortical thickness measurements. NeuroImage 99: 166 – 179.; van Eijndhoven P, van Wingen G, Katzenbauer M, Groen W, Tepest R, Fernandez G, Buitelaar J, Tendolkar I ( 2013 ): Paralimbic cortical thickness in first‐episode depression: Evidence for trait‐related differences in mood regulation. Am J Psychiatry 170: 1477 – 1486.; Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, Duggirala R, Glahn DC ( 2010 ): Cortical thickness or grey matter volume? the importance of selecting the phenotype for imaging genetics studies. NeuroImage 53: 1135 – 1146.; Wonderlick JS, Ziegler DA, Hosseini‐Varnamkhasti P, Locascio JJ, Bakkour A, van der Kouwe A, Triantafyllou C, Corkin S, Dickerson BC ( 2009 ): Reliability of MRI‐derived cortical and subcortical morphometric measures: Effects of pulse sequence, voxel geometry, and parallel imaging. NeuroImage 44: 1324 – 1333.; Ardekani BA, Guckemus S, Bachman A, Hoptman MJ, Wojtaszek M, Nierenberg J ( 2005 ): Quantitative comparison of algorithms for inter‐subject registration of 3D volumetric brain MRI scans. J Neurosci Methods 142: 67 – 76.; Bellon E, Haacke E, Coleman P, Sacco D, Steiger D, Gangarosa R ( 1986 ): MR artifacts: A review. Am J Roentgenol 147: 1271 – 1281.; Bremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S, Staib LH, Charney DS ( 2002 ): Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 51: 273 – 279.; Cobia DJ, Csernansky JG, Wang L ( 2011 ): Cortical thickness in neuropsychologically near‐normal schizophrenia. Schizophr Res 133: 68 – 76.; Colloby SJ, Firbank MJ, Vasudev A, Parry SW, Thomas AJ, O'Brien JT ( 2011 ): Cortical thickness and VBM‐DARTEL in late‐life depression. J Affect Disorders 133: 158 – 164.; Dale AM, Fischl B, Sereno MI ( 1999 ): Cortical surface‐based analysis. I. Segmentation and surface reconstruction. NeuroImage 9: 179 – 194.; Davatzikos C, Prince JL, Bryan RN ( 1996 ): Image registration based on boundary mapping. IEEE Trans Med Imaging 15: 112 – 115.; Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT ( 2006a ): An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31: 968 – 980.; Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ ( 2006b ): An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31: 968 – 980.; Destrieux C, Fischl B, Dale A, Halgren E ( 2010 ): Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53: 1 – 15.
DOI: 10.1002/hbm.22856
الإتاحة: https://doi.org/10.1002/hbm.22856Test
http://hdl.handle.net/2027.42/113142Test
حقوق: IndexNoFollow
رقم الانضمام: edsbas.1DFCD9E8
قاعدة البيانات: BASE
الوصف
تدمد:10659471
10970193
DOI:10.1002/hbm.22856