يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"Xiaofeng Yao"', وقت الاستعلام: 1.05s تنقيح النتائج
  1. 1
  2. 2

    المصدر: Food and Chemical Toxicology. 157:112540

    الوصف: Perfluorooctane sulfonate (PFOS) is one kind of persistent organic pollutants. In previous study, we found that PFOS induced autophagy-dependent lysosomal membrane permeabilization (LMP) in hepatocytes, and siRNA against lysosomal permease spinster 1 (SPNS1) relieved PFOS-induced LMP. However, whether and how SPNS1 functioned as the link between autophagy and LMP was still not defined. In this study, we constructed a stable cell line expressing high levels of SPNS1. We found that SPNS1 interacted specifically with α-tubulin of tyrosinated isotype by pull-down assay. After treatment with PFOS, the level of tyrosinated α-tubulin was autophagy-dependently decreased. SPNS1-tyrosinated α-tubulin interaction was disrupted subsequently, which led to LMP eventually. We also found that stable high-expression of SPNS1 in hepatocytes accelerated lysosomal acidification, and deteriorated PFOS-induced LMP. This study pointed out that SPNS1-tyrosinated α-tubulin interaction mediated the cross-talk between autophagy and LMP induced by PFOS, shedding new light on the mechanism of PFOS hepatotoxicity.

  3. 3

    المصدر: Biochemical and Biophysical Research Communications. 477:781-785

    الوصف: Perfluorooctane sulfonate (PFOS), a persistent organic pollutant, is blamed to be associated with the incidence of insulin resistance in the general human population. In this study, we found that PFOS inhibited the phosphorylation and activation of protein kinase B (AKT), a key mediator of cellular insulin sensitivity, in human hepatoma HepG2 cells. The mRNA level of the gluconeogenic gene PEPCK, a downstream target gene of AKT, was increased in PFOS-treated cells. Due to stimulated gluconeogenesis, insulin-stimulated glucose uptake was decreased in HepG2 cells. In our previous study, we found that PFOS disturbed autophagy in HepG2 cells. We proposed that PFOS could inhibit the activation of AKT through inhibiting mTORC2, a key regulator of autophagy. In this study, we found that the levels of triglyceride were increased in HepG2 cells. PFOS-induced accumulation of hepatic lipids also contributed to the inhibition of AKT. Eventually, the inhibition of AKT led to insulin resistance in PFOS-treated cells. Our data would provide new mechanistic insights into PFOS-induced hepatic insulin resistance.

  4. 4

    المصدر: Toxicological Sciences. 153:198-211

    الوصف: Lysosomal membrane permeabilization (LMP) and subsequently impaired autophagosome degradation was induced in HepG2 cells after treatment with perfluorooctane sulfonate (PFOS) for 24 h in our previous studies. We found that treatment of HepG2 cells with PFOS-induced autophagosome formation at earlier stage (6 h) of treatment in this study. The autophagosome formation inhibitor 3-methyladenine (3-MA) was able to relieve PFOS-induced LMP and release of cathepsin D in HepG2 cells. Knockdown of Spinster 1, a lysosomal membrane permease, attenuated PFOS-induced LMP in HepG2 cells. We proposed that Spinster 1 might work as a specific molecule that linked autophagy with LMP. PFOS-induced collapse of mitochondrial transmembrane potential was cathepsin D and autophagy dependent. Addition of 3-MA relieved PFOS-induced apoptosis, which was evidenced by Hoechst assay, AV/PI staining and caspase-3 activity assay. Inhibition of autophagosome formation by Atg5 siRNA attenuated PFOS-induced apoptosis. Treatment of HepG2 cells with PFOS for 24 h impaired mitophagy, as evidenced by an increase of cells with giant mitochondria and impairment of colocalization of PINK1 with light chain 3. In summary, we report that PFOS induces autophagy-dependent apoptosis in HepG2 cells through the lysosomal-mitochondrial axis and impairment of mitophagy, suggesting that autophagy is a primary target for PFOS toxicity. These findings provide new mechanistic insights into PFOS-induced hepatotoxicity.

  5. 5

    المؤلفون: Laifu Zhong, Xiaofeng Yao

    المصدر: Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 587:38-44

    الوصف: Perfluorooctanoic acid (C 8 HF 15 O 2 , PFOA) is widely used in various industrial fields for decades and it is environmentally bioaccumulative. PFOA is known as a potent hepatocarcinogen in rodents. But it is not yet clear whether it is also carcinogenic in humans, and the genotoxic effects of PFOA on human cells have not yet been examined. In this study, the genotoxic potential of PFOA was investigated in human hepatoma HepG2 cells in culture using single cell gel electrophoresis (SCGE) assay and micronucleus (MN) assay. In order to clarify the underlying mechanism(s) we measured the intracellular generation of reactive oxygen species (ROS) using dichlorofluorescein diacetate as a fluorochrome. The level of oxidative DNA damage was evaluated by immunocytochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG) in PFOA-treated HepG2 cells. PFOA at 50–400 μM caused DNA strand breaks and at 100–400 μM MN in HepG2 cells both in a dose-dependent manner. Significantly increased levels of ROS and 8-OHdG were observed in these cells. We conclude that PFOA exerts genotoxic effects on HepG2 cells, probably through oxidative DNA damage induced by intracellular ROS.

  6. 6

    المصدر: Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 67

    الوصف: Perfluorooctane sulfonate (PFOS) is an emerging persistent organic pollutant widely distributed in the environment, wildlife and human. In this study, as observed under the transmission electron microscope, PFOS increased autophagosome numbers in HepG2 cells, and it was confirmed by elevated LC3-II levels in Western blot analysis. PFOS increased P62 level and chloroquine failed to further increase the expression of LC3-II after PFOS treatment, indicating that the accumulation of autophagosome was due to impaired degradation rather than increased formation. With acridine orange staining, we found PFOS caused lysosomal membrane permeabilization (LMP). In this study, autophasome formation inhibitor 3-methyladenine protected cells against PFOS toxicity, autophagy stimulator rapamycin further decreased cell viability and increased LDH release, cathepsin inhibitor did not influence cell viability of PFOS-treated HepG2 cells significantly. These further supported the notion that autophagic cell death contributed to PFOS-induced hepatotoxicity. In summary, the data of the present study revealed that PFOS induced LMP and consequent blockage of autophagy flux, leading to an excessive accumulation of the autophagosomes and turning autophagy into a destructive process eventually. This finding will provide clues for effective prevention and treatment of PFOS-induced hepatic disease.