يعرض 1 - 10 نتائج من 50 نتيجة بحث عن '"antimicrobial activities"', وقت الاستعلام: 0.90s تنقيح النتائج
  1. 1
    مراجعة

    المساهمون: DQ - Departamento de Química, RUN

    وصف الملف: application/pdf

    العلاقة: Andrade, M. A., Barbosa, C. H., Shah, M. A., Ahmad, N., Vilarinho, F., Khwaldia, K., Silva, A. S., & Ramos, F. (2022). Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants, 12(1), [38]. https://doi.org/10.3390/antiox12010038Test; 2076-3921; PURE: 56194756

  2. 2
    دورية أكاديمية

    العلاقة: info:eu-repo/grantAgreement/FCT/OE/SFRH%2FBD%2F138730%2F2018/PT; info:eu-repo/grantAgreement/FCT/3599-PPCDT/ARIMNET2%2F0003%2F2016/PT; info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50006%2F2020/PT; info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04077%2F2020/PT; info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04077%2F2020/PT; https://www.mdpi.com/2076-3921/12/1/38Test; Antioxidants (Basel). 2022 Dec 25;12(1):38. doi:10.3390/antiox12010038. Review; http://hdl.handle.net/10400.18/8475Test

  3. 3
    دورية أكاديمية

    المصدر: Spanish Journal of Environmental Mutagenesis and Genomics; Vol. 27 No. 1 (2023): 51st European Environmental Mutagenesis and Genomics Society (EEMGS) & 27th Spanish Environmental Mutagenesis and Genomics Society (SEMA) meeting; 122 ; Spanish Journal of Environmental Mutagenesis and Genomics; Vol. 27 Núm. 1 (2023): 51st European Environmental Mutagenesis and Genomics Society (EEMGS) & 27th Spanish Environmental Mutagenesis and Genomics Society (SEMA) meeting; 122 ; 2952-1742

    مصطلحات موضوعية: essential oils, cyto/genotoxicity, antimicrobial activities

    وصف الملف: application/pdf

  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    العلاقة: #PLACEHOLDER_PARENT_METADATA_VALUE#; This paper was carried out under the VIPACFood project, funded by ARIMNet2 (Coordination of Agricultural Research in the Mediterranean; 2014–2017), an ERA-NET Action financed by the European Union under the Seventh Framework Programme, and by the Programa de Cooperación Interreg V-A España–Portugal (POCTEP) 2014–2020 (project 0377_IBERPHENOL_6_E). Mariana A. Andrade is grateful for her research grant (SFRH/BD/138730/2018) funded by the Foundation for Science and Technology (FCT). Cássia H. Barbosa is grateful for her research grant in the frame of the VIPACFood project (ARIMNET2/0003/2016) and the Foundation for Science and Technology (FCT), Portugal for the Ph.D. Grant 2021.08154.BD. This work was financially supported by the Mechanical Engineering and Resource Sustainability Center—MEtRICs, which is financed by national funds from the FCT/MCTES (UIDB/50006/2020, UIDB/04077/2020 and UIDP/04077/2020); https://hdl.handle.net/10316/114903Test

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    المصدر: Grasas y Aceites; Vol. 73 No. 1 (2022); e441 ; Grasas y Aceites; Vol. 73 Núm. 1 (2022); e441 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2022.v73.i1

    وصف الملف: text/html; application/pdf; text/xml

    العلاقة: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1925/2871Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1925/2872Test; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1925/2873Test; Ait Babahmad R, Aghraz A, Boutafda A, Papazoglou EG, Tarantilis PA, Kanakis C, Hafidi M, Ouhdouch Y, Outzourhit A, Ouhammou A. 2018. Chemical composition of essential oil of Jatropha curcas L. leaves and its antioxidant and antimicrobial activities. Ind. Crop. Prod. 121, 405-410.; Alegbeleye OO, Singleton I, Sant’Ana AS. 2018. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol. 73, 177-208.; Amiri P, Shahpiri A, Asadollahi MA, Momenbeik F, Partow S. 2016. Metabolic engineering of Saccharomyces cerevisiae for linalool production. Biotechnol. Lett. 38 (3), 503-508.; Chen C, Zheng Y, Zhong Y, Wu Y, Li Z, Xu LA, Xu M. 2018. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora. BMC Genomics 19 (1), 550.; Chen HP, Yang K, You CX, Lei N, Sun RQ, Geng ZF, Ma P, Cai Q, Du SS, Deng ZW. 2014. Chemical constituents and insecticidal activities of the essential oil of Cinnamomum camphora leaves against Lasioderma serricorne. J. Chem. 2014, 1-5.; Chen J, Tang C, Zhang R, Ye S, Zhao Z, Huang Y, Xu X, Lan W, Yang D. 2020. Metabolomics analysis to evaluate the antibacterial activity of the essential oil from the leaves of Cinnamomum camphora (Linn.) Presl. J. Ethnopharmacol. 253, 112652.; Cheng S-S, Lin C-Y, Yang C-K, Chen Y-J, Chung M-J, Chang S-T. 2015. Chemical polymorphism and composition of leaf essential oils of Cinnamomum kanehirae using Gas Chromatography/Mass Spectrometry, Cluster Analysis, and Principal Component Analysis. J. Wood Chem. Technol. 35 (3), 207-219.; Dai DN, Chung NT, Huong LT, Hung NH, Chau DTM, Yen NT, Setzer WN. 2020. Chemical compositions, mosquito larvicidal and antimicrobial activities of essential oils from five species of Cinnamomum Growing Wild in North Central Vietnam. Molecules 25 (6); Dannenberg GdS, Funck GD, Silva WPd, Fiorentini ÂM. 2019. Essential oil from pink pepper (Schinus terebinthifolius Raddi): chemical composition, antibacterial activity and mechanism of action. Food Control. 95, 115-120.; Dussault D, Vu KD, Lacroix M. 2014. In vitro evaluation of antimicrobial activities of various commercial essential oils, oleoresin and pure compounds against food pathogens and application in ham. Meat Sci. 96 (1), 514-520.; Fisher K, Phillips CA. 2006. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J. Appl. Microbiol. 101 (6), 1232-1240.; Guo X, Cui M, Deng M, Liu X, Huang X, Zhang X, Luo L. 2017. Molecular differentiation of five Cinnamomum camphora chemotypes using desorption atmospheric pressure chemical ionization mass spectrometry of raw leaves. Sci. Rep. 7, 46579.; He Y, Ingudam S, Reed S, Gehring A, Strobaugh TPJr, Irwin P. 2016. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J. Nanobiotechnol. 14 (1), 54.; Heer A, Guleria S, Razdan VK. 2016. Chemical composition, antioxidant and antimicrobial activities and characterization of bioactive compounds from essential oil of Cinnamomum tamala grown in north-western Himalaya. J. Plant Biochem. Biotechnol. 26 (2), 191-198.; Herman A, Tambor K, Herman A. 2016. Linalool affects the antimicrobial efficacy of essential oils. Curr. Microbiol. 72 (2), 165-172.; Imai S, Ogawa K. 2009. Quantitative analysis of carbon balance in the reproductive organs and leaves of Cinnamomum camphora (L.) Presl. J. Plant Res. 122 (4), 429-437.; Jamali CA, Kasrati A, Bekkouche K, Hassani L, Wohlmuth H, Leach D, Abbad A. 2013. Phenological changes to the chemical composition and biological activity of the essential oil from Moroccan endemic thyme (Thymus maroccanus Ball). Ind. Crop. Prod. 49, 366-372.; Jiang H, Wang J, Song L, Cao X, Yao X, Tang F, Yue Y. 2016. GCxGC-TOFMS analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora L. Presl and their insecticidal and repellent activities. Molecules 21 (4), 423.; Kizil S, Ipek A, Arslan N, Khawar KM. 2008. Effect of different developing stages on some agronomical characteristics and essential oil composition of Oregano (Origanum onites). N. Z. J. Crop Hortic. Sci. 36 (1), 71-76.; Lee G, Kim Y, Kim H, Beuchat LR, Ryu JH. 2018. Antimicrobial activities of gaseous essential oils against Listeria monocytogenes on a laboratory medium and radish sprouts. Int. J. Food Microbiol. 265, 49-54.; Lee HJ, Hyun EA, Yoon WJ, Kim BH, Rhee MH, Kang HK, Cho JY, Yoo ES. 2006. In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J. Ethnopharmacol. 103 (2), 208-216.; Limam H, Ben Jemaa M, Tammar S, Ksibi N, Khammassi S, Jallouli S, Del Re G, Msaada K. 2020. Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Ind. Crop. Prod. 158.; Liu CH, Mishra AK, Tan RX, Tang C, Yang H, Shen YF. 2006. Repellent and insecticidal activities of essential oils from Artemisia princeps and Cinnamomum camphora and their effect on seed germination of wheat and broad bean. Bioresource Technol. 97 (15), 1969-1973.; Lobo AP, da Camara CAG, de Melo JPR, de Moraes MM. 2018. Chemical composition and repellent activity of essential oils from the leaves of Cinnamomum zeylanicum and Eugenia uniflora against Diaphania hyalinata L. (Lepidoptera: Crambidae). J. Plant Dis. Prot. 126 (1), 79-87.; Marasini BP, Baral P, Aryal P, Ghimire KR, Neupane S, Dahal N, Singh A, Ghimire L, Shrestha K. 2015. Evaluation of antibacterial activity of some traditionally used medicinal plants against human pathogenic bacteria. Biomed Res. Int. 2015, 265425.; Mutlu-Ingok A, Devecioglu D, Dikmetas DN, Karbancioglu-Guler F, Capanoglu E. 2020. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An Updated Review. Molecules 25 (20).; Nisar T, Wang Z-C, Yang X, Tian Y, Iqbal M, Guo Y. 2018. Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 106, 670-680.; Otoni CG, de Moura MR, Aouada FA, Camilloto GP, Cruz RS, Lorevice MV, Soares NDFF, Mattoso LHC. 2014. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids 41 (41), 188-194.; Pragadheesh VS, Saroj A, Yadav A, Chanotiya CS, Alam M, Samad A. 2013. Chemical characterization and antifungal activity of Cinnamomum camphora essential oil. Ind. Crop. Prod. 49, 628-633.; Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heuer OE, Kahlmeter G, Kruse H, Laxminarayan R, Liebana E, Lopez-Cerero L, MacGowan A, Martins M, Rodriguez-Bano J, Rolain JM, Segovia C, Sigauque B, Tacconelli E, Wellington E, Vila J. 2015. The global threat of antimicrobial resistance: science for intervention. New Microbes and New Infections 6, 22-29.; Sarikurkcu C, Ozer MS, Calli N, Popović-Djordjević J. 2018. Essential oil composition and antioxidant activity of endemic Marrubium parviflorum subsp. oligodon. Ind. Crop. Prod. 119, 209-213.; Satyal P, Paudel P, Poudel A, Dosoky NS, Pokharel KK, Setzer WN. 2013. Bioactivities and compositional analyses of Cinnamomum Essential Oils from Nepal: C. camphora, C. tamala, and C. glaucescens. Nat. Prod. Commun. 8 (12), 1777-1784.; Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States--major pathogens. Emerg. Infect. Dis. 17 (1), 7-15.; Schmidt E, Wanner J, Hiiferl M, Jirovetz L, Buchbauer G, Gochev V, Girova T, Stoyanova A, Geissler M. 2012. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen-4-ol, thymol and linalool cultivated in southern France. Nat. Prod. Commun. 7 (8), 1095-1098.; Sriramavaratharajan V, Stephan J, Sudha V, Murugan R. 2016. Leaf essential oil of Cinnamomum agasthyamalayanum from the Western Ghats, India-A new source of camphor. Ind. Crop. Prod. 86, 259-261.; Sukcharoen O, Sirirote P, Thanaboripat D. 2017. Control of aflatoxigenic strains by Cinnamomum porrectum essential oil. J. Food Sci. Technol. 54 (9), 2929-2935.; Sun L, Zong SB, Li JC, Lv YZ, Liu LN, Wang ZZ, Zhou J, Cao L, Kou JP, Xiao W. 2016. The essential oil from the twigs of Cinnamomum cassia Presl alleviates pain and inflammation in mice. J. Ethnopharmacol. 194, 904-912.; Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U. S. A. 112 (18), 5649-5654.; Xiao S, Yu H, Xie Y, Guo Y, Fan J, Yao W. 2020. The anti-inflammatory potential of Cinnamomum camphora (L.) J.Presl essential oil in vitro and in vivo. J. Ethnopharmacol. 113516.; Xu G, Wang L, Liu J, Hu S. 2013. Decay resistance and thermal stability of bamboo preservatives prepared using camphor leaf extract. Int. Biodeterior. Biodegradation. 78, 103-107.; Yang S, Hu H, Hu T, Wang Q, Ye M, Luo J, Peng Y, Zhang R. 2017. Chemical constituents of Cinnamomum septentrionale leaf litter and its allelopathic activity on the growth of maize (Zea mays). Nat. Prod. Res. 31 (11), 1314-1317.; Zhao C, Yang X, Tian H, Yang L. 2018. An improved method to obtain essential oil, flavonols and proanthocyanidins from fresh Cinnamomum japonicum Sieb. leaves using solvent-free microwave-assisted distillation followed by homogenate extraction. Arab. J. Chem. 13 (1), 2041-2052.; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1925Test

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية