دورية أكاديمية

魚類在適應鹽度過程中能量代謝之細胞分子機制 ; Cellular and molecular mechanisms of energy metabolism in fish gill during acclimation to salinity

التفاصيل البيبلوغرافية
العنوان: 魚類在適應鹽度過程中能量代謝之細胞分子機制 ; Cellular and molecular mechanisms of energy metabolism in fish gill during acclimation to salinity
المؤلفون: 李杰龍, Lee, Jay-Ron
المساهمون: 黃鵬鵬, 臺灣大學:漁業科學研究所
سنة النشر: 2006
المجموعة: National Taiwan University Institutional Repository (NTUR)
مصطلحات موضوعية: 能量代謝, 乳酸脫氫酶, , lactate dehydrogenase, energy metabolism, gill
الوصف: 當廣鹽性魚類面對環境鹽度改變時,魚類鰓上皮細胞許多位於富含粒線體細胞 (mitochondria-rich cell, MR cell)的離子通道就必須及時運作以維持魚體內的滲透壓恆定,由於大多數的離子通道都是需要耗能的主動運輸,故鰓是個需要大量能量的器官。而魚類鰓上皮細胞中究竟是以何種物質作為能量的來源,而其又是如何在細胞間運輸的機制至今尚未清楚。相對於哺乳動物中,中樞神經系統需要充足的能量並以肝醣作為細胞內主要能量儲存形式,下游的能量運輸分子則是以乳酸為主而並非是葡萄糖。而星狀細胞(astrocyte)會儲存大量的乳酸再藉由單羧基運輸蛋白(monocarboxylate transpoter, MCT)提供給神經細胞作為能量來源。其中,乳酸脫氫酶(lactate dehydrogenase, LDH)對於乳酸的生成扮演一重要的角色。 本實驗利用莫三比克吳郭魚進行相關研究。首先利用同功異構酶澱粉凝膠電泳觀察乳酸脫氫酶不同的同功異構酶在吳郭魚鰓上皮細胞的表現情形。結果觀察到在鰓上皮細胞以乳酸脫氫酶1(LDH1)的表現為主。進一步利用LDH1、LDH5、glycogen synthase、glycogen、Na+-K+ ATPase α次單元抗體進行免疫細胞螢光染色發現到LDH1以及LDH5分別在 MR cells和富含肝醣細胞(glycogen-rich cell, GR cell)都有分布。之後利用西方墨點法分析吳郭魚在適應不同環境鹽度時LDH1、LDH5以及檸檬酸合成酶(citrate synthase, CS)蛋白質的表現量,發現到LDH1和 CS的蛋白質表現量在轉移海水後1st h都有顯著的增加,而LDH5的蛋白質表現量則是在轉移海水後的1-3rd h 之中都有顯著的增加。藉由上述結果,我們認為在魚類適應不同鹽度過程中,其鰓上皮細胞能量代謝的機制如下:當魚類轉移到海水後1st h時,其鰓上的MR cells會進入檸檬酸循環(TCA cycle)以產生大量的能量給MR cells。而在轉移到海水3rd h時,MR cells則是進行無氧呼吸為主以繼續產生大量的能量給予離子通道進行滲透壓調節。 ; Upon a salinity challenge, euryhaline teleosts immediately regulate the functions of many ion transporters and enzymes in the gill mitochondria-rich (MR) cells for maintaining their internal homeostasis. Large amount of energy is necessary for the operations of these transporters and enzymes, however the mechanism of energy metabolism in fish gills is still unclear. On the other hand, in mammalian central nervous system lactates, instead of glucose, are the main energy substrate transported from astrocyte to neuron via monocarboxylate transporter (MCT). Lactate dehydrogenase 1 (LDH1) is the key enzyme to convert the lactate to pyruvate, and LDH5 is responsible for the reverse reaction. In the present study, we used tilapia (Oreochromis mossambicus) as a model animal to investigate the roles of LDHs in the energy metabolism of fish gills during acclimation to seawater (SW). Results of starch gel electrophoresis and western blot demonstrated that LDH1 is the major form and LDH5 the minor form expressed in tilapia gill epithelial cells. Immunocytochemical experiments indicated that both LDH1 and LDH5 were expressed ...
نوع الوثيقة: text
وصف الملف: 1260066 bytes; application/pdf
اللغة: Chinese
English
العلاقة: Bacca, H., Huvet, A., Fabioux, C., Daniel, J. Y., Delaporte, M., Pouvreau, S., Van Wormhoudt, A., and Moal, J. (2005). Molecular cloning and seasonal expression of oyster glycogen phosphorylase and glycogen synthase genes. Comp Biochem Physiol B Biochem Mol Biol 140, 635-46. Baez, M., Preller, A., and Ureta, T. (2003). Frog oocyte glycogen synthase: enzyme regulation under in vitro and in vivo conditions. Arch Biochem Biophys 413, 9-16. Basaglia, F. (2000). Isozyme distribution of ten enzymes and their loci in South American lungfish, Lepidosiren paradoxa (Osteichthyes, Dipnoi). Comp Biochem Physiol B Biochem Mol Biol 126, 503-10. Basaglia, F. (2002). Multilocus isozyme systems in African lungfish, Protopterus annectens: distribution, differential expression and variation in dipnoans. Comp Biochem Physiol B Biochem Mol Biol 131, 89-102. Bollen, M., Keppens, S., and Stalmans, W. (1998). Specific features of glycogen metabolism in the liver. Biochem J 336 ( Pt 1), 19-31. Brown, A. M., Baltan Tekkok, S., and Ransom, B. R. (2004). Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int 45, 529-36. Cacciafesta, M., Marigliano, V., Piccirillo, G., Brioli, D., Scuteri, A., Campana, F., and Ferretti, F. (1990). Role of magnetic resonance spectroscopy in the diagnosis of ischemic cerebrovasculopathy. Recenti Prog Med 81, 344-50. Cameron, J. N., and Kormanik, G. A. (1982). The acid-base responses of gills and kidneys to infused acid and base loads in the channel catfish, Ictalurus punctatus. J Exp Biol 99, 143-60. Chang, C. H., (2005). Glycogen metabolism in tilapia (Oreochromis mossambicus) during acclimation to environmental salinity changes. Master thesis. Institute of Fisheries Science, National Taiwan University. Chesley, A., Howlett, R. A., Heigenhauser, G. J., Hultman, E., and Spriet, L. L. (1998). Regulation of muscle glycogenolytic flux during intense aerobic exercise after caffeine ingestion. Am J Physiol 275, R596-603. Chih, C. P., Lipton, P., and Roberts, E. L., Jr. (2001). Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci 24, 573-8. Choi, I. Y., Seaquist, E. R., and Gruetter, R. (2003). Effect of hypoglycemia on brain glycogen metabolism in vivo. J Neurosci Res 72, 25-32. Dringen, R., Gebhardt, R., and Hamprecht, B. (1993). Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623, 208-14. Elcock, A. H., and McCammon, J. A. (1996). Evidence for electrostatic channeling in a fusion protein of malate dehydrogenase and citrate synthase. Biochemistry 35, 12652-8. Evans, D. H., Piermarini, P. M., and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177. Fayol, L., Baud, O., Monier, A., Pellerin, L., Magistretti, P., Evrard, P., and Verney, C. (2004). Immunocytochemical expression of monocarboxylate transporters in the human visual cortex at midgestation. Brain Res Dev Brain Res 148, 69-76. Feng, S. H., Leu, J. H., Yang, C. H., Fang, M. J., Huang, C. J., and Hwang, P. P. (2002). Gene expression of Na+-K+-ATPase alpha 1 and alpha 3 subunits in gills of the teleost Oreochromis mossambicus, adapted to different environmental salinities. Mar Biotechnol (NY) 4, 379-91. Fonseca de Almeida-Val, V. M., and Val, A. L. (1993). Evolutionary trends of LDH isozymes in fishes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 105, 21-28. Gamperl, A. K., Rodnick, K. J., Faust, H. A., Venn, E. C., Bennett, M. T., Crawshaw, L. I., Keeley, E. R., Powell, M. S., and Li, H. W. (2002). Metabolism, swimming performance, and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): evidence for phenotypic differences in physiological function. Physiol Biochem Zool 75, 413-31. Gladden, L. B. (2004). Lactate metabolism: a new paradigm for the third millennium. J Physiol 558, 5-30. Gruetter, R. (2003). Glycogen: the forgotten cerebral energy store. J Neurosci Res 74, 179-83. Hirose, S., Kaneko, T., Naito, N., and Takei, Y. (2003). Molecular biology of major components of chloride cells. Comp Biochem Physiol B Biochem Mol Biol 136, 593-620. Hwang, P. P., Lee, T. H., Weng, C. F., Fang, M. J., and Cho, G. Y. (1999). Presence of Na-K-ATPase in mitochondria-rich cells in the yolk-sac epithelium of larvae of the teleost Oreochromis mossambicus. Physiol Biochem Zool 72, 138-44. Hwang, P. P., and Sun, C. M. (1989). Putative role of adenohypophysis in the osmoregulation of tilapia larvae (Oreochromis mossambicus; Teleostei): an ultrastructure study. Gen Comp Endocrinol 73, 335-41. Ide, T., Steinke, J., and Cahill, G. F., Jr. (1969). Metabolic interactions of glucose, lactate, and beta-hydroxybutyrate in rat brain slices. Am J Physiol 217, 784-92. Ishikawa, J., Taniguchi, T., Higashi, H., Miura, K., Suzuki, K., Takeshita, A., and Maekawa, M. (2004). High lactate dehydrogenase isoenzyme 1 in a patient with malignant germ cell tumor is attributable to aberrant methylation of the LDHA gene. Clin Chem 50, 1826-8. Izumi, Y., Benz, A. M., Zorumski, C. F., and Olney, J. W. (1994). Effects of lactate and pyruvate on glucose deprivation in rat hippocampal slices. Neuroreport 5, 617-20. Izumi, Y., Katsuki, H., and Zorumski, C. F. (1997). Monocarboxylates (pyruvate and lactate) as alternative energy substrates for the induction of long-term potentiation in rat hippocampal slices. Neurosci Lett 232, 17-20. Jean, C. T., Lee, S. C., Hui, C. F., and Chen, C. T. (1995). Tissue-Specific Isozymes in Fishes of the Subfamily Sparinae (Perciformes, Sparidae) from the Coastal Waters of Taiwan. Zoological Studies 34, 164-169. Johnston, M. (1999). Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet 15, 29-33. Kline, E. S., Brandt, R. B., Laux, J. E., Spainhour, S. E., Higgins, E. S., Rogers, K. S., Tinsley, S. B., and Waters, M. G. (1986). Localization of L-lactate dehydrogenase in mitochondria. Arch Biochem Biophys 246, 673-80. Kong, J., Shepel, P. N., Holden, C. P., Mackiewicz, M., Pack, A. I., and Geiger, J. D. (2002). Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22, 5581-7. Korinkova, P., and Lodin, Z. (1976). The metabolism of glucose of nerve cells cultivated under different conditions. Acta Histochem 56, 47-65. Koslowski, M., Tureci, O., Bell, C., Krause, P., Lehr, H. A., Brunner, J., Seitz, G., Nestle, F. O., Huber, C., and Sahin, U. (2002). Multiple splice variants of lactate dehydrogenase C selectively expressed in human cancer. Cancer Res 62, 6750-5. Lin, C. H., Huang, C. L., Yang, C. H., Lee, T. H., and Hwang, P. P. (2004). Time-course changes in the expression of Na, K-ATPase and the morphometry of mitochondrion-rich cells in gills of euryhaline tilapia (Oreochromis mossambicus) during freshwater acclimation. J Exp Zoolog A Comp Exp Biol 301, 85-96. Lin, L. Y., and Hwang, P. P. (2001). Modification of morphology and function of integument mitochondria-rich cells in tilapia larvae (Oreochromis mossambicus) acclimated to ambient chloride levels. Physiol Biochem Zool 74, 469-76. Lou, F., van Der Laarse, W. J., Curtin, N. A., and Woledge, R. C. (2000). Heat production and oxygen consumption during metabolic recovery of white muscle fibres from the dogfish Scyliorhinus canicula. J Exp Biol 203, 1201-10. Maekawa, M., Inomata, M., Sasaki, M. S., Kaneko, A., Ushiama, M., Sugano, K., Takayama, J., and Kanno, T. (2002). Electrophoretic variant of a lactate dehydrogenase isoenzyme and selective promoter methylation of the LDHA gene in a human retinoblastoma cell line. Clin Chem 48, 1938-45. Magistretti, P. J., Sorg, O., Yu, N., Martin, J. L., and Pellerin, L. (1993). Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci 15, 306-12. Mannen, H., Tsoi, S. C., Krushkal, J. S., Li, W. H., and Li, S. S. (1997). The cDNA cloning and molecular evolution of reptile and pigeon lactate dehydrogenase isozymes. Mol Biol Evol 14, 1081-7. Markert, C. L. (1984). Lactate dehydrogenase. Biochemistry and function of lactate dehydrogenase. Cell Biochem Funct 2, 131-4. Marshall, W. S. (2002). Na(+), Cl(-), Ca(2+) and Zn(2+) transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293, 264-83. Marshall, W. S., Emberley, T. R., Singer, T. D., Bryson, S. E., and McCormick, S. D. (1999). Time course of salinity adaptation in a strongly euryhaline estuarine teleost, fundulus heteroclitus: a multivariable approach. J Exp Biol 202 (Pt 11), 1535-44. McIlwain, H. (1953). The effect of depressants on the metabolism of stimulated cerebral tissues. Biochem J 53, 403-12. McKenna, M. C., Tildon, J. T., Stevenson, J. H., Boatright, R., and Huang, S. (1993). Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15, 320-9. Medina, J. M., and Tabernero, A. (2005). Lactate utilization by brain cells and its role in CNS development. J Neurosci Res 79, 2-10. Mehrani, H., and Storey, K. B. (1993). Control of glycogenolysis and effects of exercise on phosphorylase kinase and cAMP-dependent protein kinase in rainbow trout organs. Biochem Cell Biol 71, 501-6. Morgan, J. A., Cranwell, P. A., and Pickup, R. W. (1991). Survival of Aeromonas salmonicida in lake water. Appl Environ Microbiol 57, 1777-82. Nakano, K., Tagawa, M., Takemura, A., and Hirano, T. (1998). Temporal changes in liver carbohydrate metabolism associated with seawater transfer in Oreochromis mossambicus. 119, 721-728. Oliveira, G. T., Rossi, I. C., Kucharski, L. C., and Da Silva, R. S. (2004). Hepatopancreas gluconeogenesis and glycogen content during fasting in crabs previously maintained on a high-protein or carbohydrate-rich diet. Comp Biochem Physiol A Mol Integr Physiol 137, 383-90. Ozcan, S., Dover, J., and Johnston, M. (1998). Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. Embo J 17, 2566-73. Parker, G., Taylor, R., Jones, D., and McClain, D. (2004). Hyperglycemia and inhibition of glycogen synthase in streptozotocin-treated mice: role of O-linked N-acetylglucosamine. J Biol Chem 279, 20636-42. Pederson, B. A., Cheng, C., Wilson, W. A., and Roach, P. J. (2000). Regulation of glycogen synthase. Identification of residues involved in regulation by the allosteric ligand glucose-6-P and by phosphorylation. J Biol Chem 275, 27753-61. Pellerin, L. (2003). Lactate as a pivotal element in neuron-glia metabolic cooperation. Neurochem Int 43, 331-8. Pellerin, L., and Magistretti, P. J. (2003). How to balance the brain energy budget while spending glucose differently. J Physiol 546, 325. Pellerin, L., Pellegri, G., Martin, J. L., and Magistretti, P. J. (1998). Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proc Natl Acad Sci U S A 95, 3990-5. Perry, S. F. (1997). The chloride cell: structure and function in the gills of freshwater fishes. Annu Rev Physiol 59, 325-47. Perry, S. F., and Walsh, P. J. (1989). Metabolism of isolated fish gill cells: contribution of epithelial chloride cells. J Exp Biol 144, 507-20. Richards, J. G., Heigenhauser, G. J., and Wood, C. M. (2002). Glycogen phosphorylase and pyruvate dehydrogenase transformation in white muscle of trout during high-intensity exercise. Am J Physiol Regul Integr Comp Physiol 282, R828-36. Roche, T. E., and Reed, L. J. (1974). Monovalent cation requirement for ADP inhibition of pyruvate dehydrogenase kinase. Biochem Biophys Res Commun 59, 1341-8. Sangiao-Alvarellos, S., Laiz-Carrion, R., Guzman, J. M., Martin del Rio, M. P., Miguez, J. M., Mancera, J. M., and Soengas, J. L. (2003). Acclimation of S aurata to various salinities alters energy metabolism of osmoregulatory and nonosmoregulatory organs. Am J Physiol Regul Integr Comp Physiol 285, R897-907. Shambaugh, G. E., 3rd, Koehler, R. A., and Freinkel, N. (1977). Fetal fuels II: contributions of selected carbon fuels to oxidative metabolism in rat conceptus. Am J Physiol 233, E457-61. Shaw, C. R., and Barto, E. (1963). Genetic Evidence for the Subunit Structure of Lactate Dehydrogenase Isozymes. Proc Natl Acad Sci U S A 50, 211-4. Skurat, A. V., Dietrich, A. D., and Roach, P. J. (2000). Glycogen synthase sensitivity to insulin and glucose-6-phosphate is mediated by both NH2- and COOH-terminal phosphorylation sites. Diabetes 49, 1096-100. Skurat, A. V., and Roach, P. J. (1995). Phosphorylation of sites 3a and 3b (Ser640 and Ser644) in the control of rabbit muscle glycogen synthase. J Biol Chem 270, 12491-7. Steffensen, J. F. (2002). Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact! Comp Biochem Physiol A Mol Integr Physiol 132, 789-95. Tabernero, A., Vicario, C., and Medina, J. M. (1996). Lactate spares glucose as a metabolic fuel in neurons and astrocytes from primary culture. Neurosci Res 26, 369-76. Tseng, Y. C., (2004). Role of glycogen phosphorylase in energy supplying for osmoregulation in gills of tilapia (Oreochromis mossambicus). Master thesis. Institute of Fisheries Science, National Taiwan University. Vicario, C., and Medina, J. M. (1992). Metabolism of lactate in the rat brain during the early neonatal period. J Neurochem 59, 32-40. Walz, W., and Mukerji, S. (1988a). Lactate production and release in cultured astrocytes. Neurosci Lett 86, 296-300. Walz, W., and Mukerji, S. (1988b). Lactate release from cultured astrocytes and neurons: a comparison. Glia 1, 366-70. Wilson, J. M., and Laurent, P. (2002). Fish gill morphology: inside out. J Exp Zool 293, 192-213. Yuan, M., Shao, H., Geng, Z., Liu, J., and Deng, A. (1998). Regulating function of enzymization and deenzymization of the lactate dehydrogenase isozymes in the mouse tissues during hypoxia. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 20, 449-53.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/59349Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/59349/1/ntu-95-R93b45011-1.pdfTest
الإتاحة: http://ntur.lib.ntu.edu.tw/handle/246246/59349Test
http://ntur.lib.ntu.edu.tw/bitstream/246246/59349/1/ntu-95-R93b45011-1.pdfTest
رقم الانضمام: edsbas.F14FBAB9
قاعدة البيانات: BASE