دورية أكاديمية

Criticality Analysis of the Lower Ionosphere Perturbations Prior to the 2016 Kumamoto (Japan) Earthquakes as Based on VLF Electromagnetic Wave Propagation Data Observed at Multiple Stations.

التفاصيل البيبلوغرافية
العنوان: Criticality Analysis of the Lower Ionosphere Perturbations Prior to the 2016 Kumamoto (Japan) Earthquakes as Based on VLF Electromagnetic Wave Propagation Data Observed at Multiple Stations.
المؤلفون: Potirakis, Stelios M., Asano, Tomokazu, Hayakawa, Masashi
المصدر: Entropy; Mar2018, Vol. 20 Issue 3, p199, 17p
مصطلحات موضوعية: EARTHQUAKES, LOWER ionosphere, ELECTROMAGNETIC wave propagation, PERTURBATION theory, LITHOSPHERE
مصطلحات جغرافية: KUMAMOTO-ken (Japan), JAPAN
مستخلص: The perturbations of the ionosphere which are observed prior to significant earthquakes (EQs) have long been investigated and could be considered promising for short-term EQ prediction. One way to monitor ionospheric perturbations is by studying VLF/LF electromagnetic wave propagation through the lower ionosphere between specific transmitters and receivers. For this purpose, a network of eight receivers has been deployed throughout Japan which receive subionospheric signals from different transmitters located both in the same and other countries. In this study we analyze, in terms of the recently proposed natural time analysis, the data recorded by the above-mentioned network prior to the catastrophic 2016 Kumamoto fault-type EQs, which were as huge as the former 1995 Kobe EQ. These EQs occurred within a two-day period (14 April: MW = 6.2 and MW = 6.0, 15 April: MW = 7.0) at shallow depths (~10 km), while their epicenters were adjacent. Our results show that lower ionospheric perturbations present critical dynamics from two weeks up to two days before the main shock occurrence. The results are compared to those by the conventional nighttime fluctuation method obtained for the same dataset and exhibit consistency. Finally, the temporal evolutions of criticality in ionospheric parameters and those in the lithosphere as seen from the ULF electromagnetic emissions are discussed in the context of the lithosphere-atmosphere-ionosphere coupling. [ABSTRACT FROM AUTHOR]
Copyright of Entropy is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:10994300
DOI:10.3390/e20030199