دورية أكاديمية

Pharmacokinetic characterization of anhuienoside C and its deglycosylated metabolites in rats.

التفاصيل البيبلوغرافية
العنوان: Pharmacokinetic characterization of anhuienoside C and its deglycosylated metabolites in rats.
المؤلفون: Sun, Hua, Liu, Hui, Zhao, Huinan, Wang, Ying, Li, Yao-lan, Ye, Wen-cai, Wu, Baojian
المصدر: Xenobiotica; Oct2017, Vol. 47 Issue 10, p885-893, 9p
مصطلحات موضوعية: TRITERPENOID saponins, PHARMACOKINETICS, DEGLYCOSYLATION, DRUG metabolism, INTESTINAL physiology
مستخلص: 1. Anhuienoside C (AC), a triterpenoid saponin derived from the traditional Chinese medicine (TCM) “Di Wu”, has significant anti-inflammatory and anti-rheumatoid arthritis activities. Here we aimed to characterize the pharmacokinetics of AC and its deglycosylated metabolites in rats. 2. AC was administered to rats by intravenous injection or oral gavage. AC and its four deglycosylated metabolites (M1, M2, M3 and M4) in biological samples were quantified using a UPLC-QTOF/MS system. The pharmacokinetic data were analyzed by compartmental modeling. The metabolism of M1, M2, M3 and M4 was determined using rat liver microsomes (RLM) and rat intestine microsomes (RIM). The intestinal permeabilities of AC and its metabolites were evaluated using Parallel artificial membrane permeability assay (PAMPA) and MDR1-transfected Madin–Darby canine kidney cell (MDCK–MDR1) cell model. 3. AC pharmacokinetics was well described by the one-compartment model. The oral bioavailability of AC was exceedingly low (F = 0.03%). Consistently, AC was poorly distributed (< 0.08 μM) in major organs including the heart, liver, spleen, lung and kidney after oral uptake. Three of four deglycosylated metabolites (M2, M3, and M4) underwent further metabolism in RLM, generating five, two and five oxidized products, respectively. Both PAMPA and MDCK-MDR1 experiments showed that AC and its metabolites were poorly permeable. Furthermore, the net flux ratios derived from MDCK-MDR1 versus wild-type MDCK cells were, respectively 1.3, 1.5, 0.7, 1.2 and 0.6 for AC, M1, M2, M3 and M4, suggesting that these compounds were non-substrates of P-glycoprotein. 4. In conclusion, extensive pre-systemic metabolism and poor permeability were the main causes of low systemic exposures of oral AC and its four metabolites. [ABSTRACT FROM AUTHOR]
Copyright of Xenobiotica is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00498254
DOI:10.1080/00498254.2016.1241452