يعرض 1 - 10 نتائج من 323 نتيجة بحث عن '"Plant production"', وقت الاستعلام: 1.34s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Revista Facultad Nacional de Agronomía Medellín; Vol. 74 No. 2 (2021); 9491-9497 ; Revista Facultad Nacional de Agronomía Medellín; v. 74 n. 2 (2021); 9491-9497 ; Revista Facultad Nacional de Agronomía Medellín; Vol. 74 Núm. 2 (2021); 9491-9497 ; 2248-7026 ; 0304-2847

    وصف الملف: text/xml; application/pdf

    العلاقة: https://revistas.unal.edu.co/index.php/refame/article/view/90040/80226Test; https://revistas.unal.edu.co/index.php/refame/article/view/90040/79268Test; Apaza V, Caceres G, and Pinedo R. 2013.Catálogo de variedades comerciales de quinua en el Perú. Ministerio de Agricultura y Riego (Perú) Instituto Nacional de Innovación Agraria Organización de las Naciones Unidas para la Agricultura y la Alimentación.; Asher A, Galili S Whitney T and Rubinovich L. 2020. The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dual-purpose crop for grain production and livestock feed. Scientia Horticulturae 272: 109534. https://doi.org/10.1016/j.scienta.2020.109534Test; Bazile D, Pulvento C, Verniau A, Al-Nusairi M S, Ba D, Breidy J, Hassan L, Mohammed M and Padulosi S. 2016. Worldwide evaluations of quinoa: preliminary results from Post International Year of Quinoa FAO projects in nine countries. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.00850Test; Becker VI, Goessling JW, Duarte B, Caçador I, Liu F, Rosenqvist E and Jacobsen SE. 2017. Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa). Functional Plant Biology 44(7): 665–678. https://doi.org/10.1071/FP16370Test; Bosco LC, Bergamaschi H and Marodin GAB. 2020. Solar radiation effects on growth, anatomy, and physiology of apple trees in a temperate climate of Brazil. International Journal of Biometeorology 64: 1969–1980. https://doi.org/10.1007/s00484-020-01987-wTest; Delgado AI, Palacios JH and Betancourt C. 2009. Evaluación de 16 genotipos de quinua dulce (Chenopodium quinoaWilld) en el municipio de Iles, Nariño (Colombia). Agronomía Colombiana 27(2): 159–167, https://revistas.unal.edu.co/index.php/agrocol/article/view/11125Test; De Santis G, Ronga D, Caradonia F, Ambrosio T D, Troisi J, Rascio A, Fragasso M, Pecchioni N, and Rinaldi M. 2018. Evaluation of two groups of quinoa (Chenopodium quinoa Willd.) accessions with different seed colours for adaptation to the Mediterranean environment. Crop and Pasture Science 69(12): 1264–1275. https://doi.org/10.1071/CP18143Test; Eisa SS, El-Samad E HA, Hussin SA, Ali EA, Ebrahim M, González JA and Abdel-Ati AA. 2018. Quinoa in Egypt - Plant density effects on seed yield and nutritional quality in marginal regions. Middle East Journal of Applied Sciences 8(2): 515–522. https://core.ac.uk/download/pdf/237184478Test; Erazzú LE, JA González, SE Buedo and FE Prado. 2016. Effects of sowing density on Chenopodium quinoa (quinoa), Incidence on morphological aspects and grain yield in Var. CICA growing in Amaicha del Valle, Tucumán, Argentina. Lilloa 53(1): 12-22. https://inta.gob.ar/sites/default/files/script-tmp-intaTest; Fghire R, Anaya F, Ali OI, Benlhabib O, Ragab R and Wahbi S. 2015. Physiological and photosynthetic response of quinoa to drought stress. Chilean Journal of Agricultural Research 75(2): 174–183. https://doi.org/10.4067/S0718-58392015000200006Test; Garrido M, Silva P, Silva H, Muñoz R, Baginsky C and Acevedo E. 2013. Evaluación del rendimiento de nueve genotipos de quinua (Chenopodium quinoa Willd.) bajo diferentes disponibilidades hídricas en ambiente mediterráneo. Idesia (Arica) 31(2): 69–76. https://doi.org/10.4067/S0718-34292013000200010Test; Gesinski K. 2008. Evaluation of the development and yielding potential of Chenopodium quinoa Willd. under the climatic conditions of Europe. Part Two: Yielding potential of Chenopodium quinoa under different conditions. Acta Agrobotanica 61(1). https://doi.org/10.5586/aa.2008.025Test; Gomez-Pando L. 2015. Quinoa Breeding. Quinoa: Improvement and Sustainable Production. https://doi.org/doi:10.1002/9781118628041.ch6Test; Hunt R. 1978. Plant growth analysis, studies in biology No. 17. Edward Arnold, London.96, p.; Hussain MI, Al- Dakheel AJ and Reigosa MJ. 2018. Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. Plant Physiology and Biochemistry 129: 411–420. https://doi.org/10.1016/J.PLAPHY.2018.06.023Test; Idinoba ME, Idinoba PA, and Gbadegesin AS. 2002. Radiation interception and its efficiency for dry matter production in three crop species in the transitional humid zone of Nigeria. Agronomie 22(3): 273–281. https://www.agronomy-journal.org/articles/agro/abs/2002/03/04/04.htmlTest; Jacobsen SE, Jorgensen I and Stolen O. 1994. Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. The Journal of Agricultural Science 122(1): 47–52. https://doi.org/10.1017/S0021859600065783Test; Jacobsen SE, Mujica A and Jensen CR 2003. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International 19(1–2): 99–109. https://doi.org/10.1081/FRI-120018872Test; Jia Q, Sun L, Mou H, Ali S, Liu D, Zhang Y, Zhang P, Ren X and Jia Z. 2018. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agricultural Water Management 201: 287–298. https://doi.org/10.1016/j.agwat.2017.11.025Test; Lambers H, Chapin S and Pons T. 2008. Chapter 4: Leaf energy budgets: Effects of radiation and temperature, In: Plant Physiological Ecology. Second edition. Springer Science&Business Media, New York. pp. 225–236. https://doi.org/10.1007/978-0-387-78341-3_4Test; Liu T, Song F, Liu S and Zhu X. 2012. Light interception and radiation use efficiency response to narrow-wide row planting patterns in maize. Australian Journal of Crop Science 6(3): 506–513.; Liu X, Rahman T, Yang F, Song C, Yong T, Liu J, … and Yang W. 2017. PAR interception and utilization in different maize and soybean intercropping patterns. PLOS ONE 12(1): e0169218. https://doi.org/10.1371/journal.pone.0169218Test; Moradi AB, Carminati A, Vetterlein D, Vontobel P, Lehmann E, Weller U, … and Oswald SE. 2011. Three-dimensional visualization and quantification of water content in the rhizosphere. New Phytologist 192(3): 653–663. https://doi.org/10.1111/j.1469-8137.2011.03826.xTest; Pando G L, Yarango D, Ibañez M, Aguilar E and Deza P. 2017. Development of advanced mutant lines of native grains through radiation-induced mutagenesis in Peru. Horticulture International Journal 1(3): 15–19. https://doi.org/10.15406/hij.2017.01.00015Test; Razzaghi F, Ahmadi SH, Jacobsen SE, Jensen CR and Andersen MN. 2012. Effects of salinity and soil-drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa Willd.). Journal of Agronomy and Crop Science 198(3): 173–184. https://doi.org/10.1111/j.1439-037X.2011.00496.xTest; Ruiz RA and Bertero HD. 2008. Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd.) cultivars. European Journal of Agronomy 29(2–3): 144–152. https://doi.org/10.1016/j.eja.2008.05.003Test; Spehar CR and Rocha JE. 2009. Effect of sowing density on plant growth and development of quinoa , genotype 4.5, in the Brazilian Savannah Highlands. Bioscience Journal (Uberlândia) 25(4): 53–58. http://www.seer.ufu.br/index.php/biosciencejournal/article/view/6952Test; Tapia M. 2000. Agronomía de los cultivos andinos. Granos andinos: quinua (Chenopodium quinoa Willd.). In: Cultivos andinos subexplotados y su aporte a la alimentación (Second). Santiago de Chile: Food and Agriculture Organization.; Tapia M, Alandia S and Cardozo A. 1979. Quinua y canihua. Cultivos Andinos. Serie Libros y Materiales Educativos, 49.; Tarek E, Sadak MS and Dawood MG. 2017. Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International: CIGR Journal Special issue 2017: 245–254. https://cigrjournal.org/index.php/Ejounral/article/view/4539Test; Veloza C, Romero G and Gómez JJ. 2016. Morphoagronomic response and protein quality of three accessions of Quinoa (Chenopodium quinoa Willd.) in the northern sabana of Bogotá. Revista UDCA Actualidad and Divulgación Científica 19(2): 325–332. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262016000200009Test; Zurita-Silva A, Fuentes F, Zamora P, Jacobsen SE and Schwember AR. 2014. Breeding quinoa (Chenopodium quinoa Willd.): Potential and perspectives. Molecular Breeding 34(1): 13–30. https://doi.org/10.1007/s11032-014-0023-5Test; https://revistas.unal.edu.co/index.php/refame/article/view/90040Test

  2. 2
    دورية أكاديمية
  3. 3
  4. 4
    دورية أكاديمية
  5. 5
  6. 6
  7. 7
  8. 8
    دورية أكاديمية
  9. 9
  10. 10