يعرض 1 - 10 نتائج من 37 نتيجة بحث عن '"Forrajes"', وقت الاستعلام: 1.48s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المصدر: Revista Colombiana de Ciencias Pecuarias; Vol. 37 No. 1 (2024): January - March 2024; 27-41 ; Revista Colombiana de Ciencias Pecuarias; Vol. 37 Núm. 1 (2024): Enero - Marzo 2024; 27-41 ; Revista Colombiana de Ciencias Pecuarias; v. 37 n. 1 (2024): Janeiro - Março 2024; 27-41 ; 2256-2958

    وصف الملف: application/pdf

  3. 3
    دورية أكاديمية

    المصدر: Revista Colombiana de Ciencias Pecuarias; Vol. 36 No. 1 (2023): January - March 2023; 33-43 ; Revista Colombiana de Ciencias Pecuarias; Vol. 36 Núm. 1 (2023): Enero - Marzo 2023; 33-43 ; Revista Colombiana de Ciencias Pecuarias; v. 36 n. 1 (2023): Janeiro - Março 2023; 33-43 ; 2256-2958

    وصف الملف: application/pdf

  4. 4
    دورية أكاديمية
  5. 5

    جغرافية الموضوع: 13(17)

    وصف الملف: 1-16; application/pdf

    العلاقة: https://www.mdpi.com/2076-2615/13/17/2760Test; Animals; 1. Peñuela, L.; Fernández, A.P.; Castro, F.; Ocampo, A. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; Universidad de los Llanos, The Nature Conservancy y la Fundación Horizonte Verde con el apoyo de la Fundación Biodiversidad de España, la Corporación Autónoma Regional de la Orinoquia: Villavicencio, Colombia, 2011. 2. Vélez-Terranova, M. Estrategias tecnológicas para la intensificación de la productividad ganadera en condiciones de sabanas inundables en la Orinoquía colombiana. Trop. Subtrop. Agroecosyst. 2019, 22, 257–266. [CrossRef] 3. Peñuela, L.; Fernández, A. La ganadería ligada a procesos de conservación en la sabana inundable de la Orinoquia. Orinoquia 2010, 14 (Suppl. 1), 5–17. 4. Salamanca-Carreño, A.; Vélez-Terranova, M.; Vargas-Corzo, O.M.; Pérez-López, O.; Castillo-Pérez, A.F.; Parés-Casanova, P.M. Relationship of Physiographic Position to Physicochemical Characteristics of Soils of the Flooded-Savannah Agroecosystem, Colombia. Agriculture 2023, 13, 220. [CrossRef]. . Pérez Bona, R.A.; Vargas Corzo, O.M. Características de la Sabana Nativa y su Potencial de Producción Bovina en la Llanura Inundable de Arauca; Boleín Técnico N 25; Programa Regional de Investigación Pecuaria, Corpoica: Arauca, Colombia, 2001. 6. Amiri, F.; Mohamed-Sharif, A.R. Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin J. Sci. Technol. 2012, 34, 577–586. 7. Rinehart, L. Ruminant Nutrition for Graziers. ATTRA—National Sustainable Agriculture Information Service. 2008. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-10/Ruminant%20Nutrition%20for%20Graziers.pdfTest (accessed on 15 August 2023). 8. Ariza-Nieto, C.M.; Mojica, B.; Parra, D.; Afanador-Tellez, G. Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. J. Near Infrared Spectrosc. 2018, 26, 44–52. [CrossRef] 9. Salamanca-Carreño, A.; Vélez-Terranova, M.; Vargas-Corzo, O.M.; Parés-Casanova, P.M.; Bentez-Molano, J. Productive and Nutritional Characteristics of Native Grasses from the Floodplain Banks Ecosystem in the Colombian Orinoquia. Sustainability 2022, 14, 15151. [CrossRef] 10. Getachew, G.; Blümmel, M.; Makkar, H.P.; Becker, K. In vitro measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 1998, 72, 261–281. [CrossRef] 11. Macheboeuf, D.; Coudert, l.; Bergeault, R.; Lalière, G.; Niderkorn, V. Screening of plants from diversified natural grasslands for their potential to combine high digestibility, and low methane and ammonia production. Animal 2014, 8, 1797–1806. [CrossRef] 12. Gemeda, B.S.; Hassen, A. In vitro fermentation, digestibility and methane production of tropical perennial grass especies. Crop Pasture Sci. 2014, 65, 479–488. [CrossRef] 13. Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [CrossRef] 14. Bekele, W.; Guinguina, A.; Zegeye, A.; Simachew, A.; Ramin, M. Contemporary Methods of Measuring and Estimating Methane Emission from Ruminants. Methane 2022, 1, 82–95. [CrossRef] 15. Flachowsky, G.; Lebzien, P. Effects of phytogenic substances on rumen fermentation and methane emissions: A proposal for a research process. Anim. Feed Sci. Technol. 2012, 176, 70–77. [CrossRef] 16. Reihardt, M.S.; Foote, A.P.; Lambert, B.D.; Muir, J.P. Effects of protein or energy supplementation on in situ disappearance of lowand high-quality Coastal Bermudagrass hay in goats. Texas J. Agric. Nat. Res. 2011, 24, 97–105. 17. Aparicio, R.; González-Ronquillo, M.; Torres, R.; Astudillo, L.; Cordova, L.; Carrasquel, J. Degradabilidad de los pastos lambedora (Leersia hexandra) y paja de agua (Hymenachne amplexicaulis) en cuatro épocas del año de una sabana inundable del estado Apure, Venezuela. Zootec. Trop. 2007, 25, 225–228. 18. González-Ronquillo, M.; Aparicio, R.; Torres, R.; Domínguez-Vara, I.A. Producción de biomasa, composición química y producción de gas in vitro de la vegetación de una sabana estacional modulada. Zootec. Trop. 2009, 2, 407–417. 19. Holdridge, L. Ecología Basada en Zonas de Vida; IICA: San Jose, Costa Rica, 1987; p. 216. 20. Cerdas, R. Programa de fertilización de forrajes. Desarrollo de un módulo práctico para técnicos y estudiantes de ganadería de Guanacaste, Costa Rica. InterSedes 2011, 12, 109–128. 21. Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [CrossRef] 22. Goering, H.K.; Van Soest, P.J. Forage fiber analysis (apparatus, regents, procedures and some applications). Agric. Handb. 1970, 379, 1–20. 23. UN. Universidad Nacional de Colombia. Laboratorio de Biotecnología Ruminal (BIORUM)). 2023. Available online: https: //direcciondelaboratorios.medellin.unal.edu.co/index.php/nuestros-laboratorios/facultad-de-ciencias-agrarias/66 (accessed on 23 June 2023). 24. Littell, R.; Milliken, G.; Stroup, W.;Wolfinger, R.; Schabenberger, O. SAS for Mixed Models, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2007. 25. InfoStat. Software Estadistico. Versión 30/04/2020; Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. 26. Cruz-Hernández, A.; Hernández-Garay, A.; Aranda-Ibañez, E.; Chay-Canul, A.; Márquez-Quiroz, C.; Rojas-Garcia, A.L.; Gómez- Vázquez, A. Nutritive value of Mulato grass under dierent grazing strategies. Esosist. Recur. Agropec. 2017, 4, 65–72. [CrossRef] 27. Garay, J.R.; Joaquin-Cancino, S.; Zárate-Fortuna, P.; Ibarra-Hinojosa, M.A.; Martínez-González, J.C.; González-Dávila, R.P.; Cienfuegos-Rivas, E.G. Dry matter accumulation and crude protein concentration in Brachiaria spp. cultivars in the humid tropics of Ecuador. Trop. Grasslands-Forrajes Trop. 2017, 5, 66–76. [CrossRef] 28. Luce, M.S.; Gouveia, G.G.; Eudoxie, G.D. Comparative effects of food processing liquid slurry and inorganic fertilizers on tanner grass (Brachiaria arrecta) pasture: Grass yield, crude protein and P levels and residual soil N and P. Grass Forage Sci. 2016, 72, 401–413. [CrossRef] 29. Rojas-Sandoval, J. Urochloa arrecta (African signalgrass); CABI Compendium: Wallingford, UK, 2023. 30. Jiménez, J.C.; Cardoso, J.A.; Leiva, L.F.; Gil, J.; Forero, M.G.;Worthington, M.L.; Miles, J.W.; Rao, I.M. Non-destructive Phenotyping to Identify Brachiaria Hybrids Tolerant to Waterlogging Stress under Field Conditions. Front. Plant Sci. 2017, 8, 167. [CrossRef] 31. Dias-Filho, M.B.; Dos Santos-Lopes, M.J. Screening for tolerance to waterlogging in forage plants. In Proceedings of the III International Symposium on Forage Breeding, Bonito, MS, Brazil, 7–11 November 2011. 32. Reyes-Pérez, J.J.; Méndez-Martínez, Y.; Verdecia, D.; Luna-Murillo, R.A.; Hernández Montiel, L.G.; Herrera, R. Components of the yield and bromatological composition of three Brachiaria varieties in El Empalme area, Ecuador. Cuban J. Agric. Sci. 2018, 52, 35–445. 33. Cevallos, J.H.A.; Guerrero, F.C.; Zamora, G.Q.; Murillo, R.L.; Valdez, O.D.M.; Guerra, I.E.; Montes, S.Z.; Garaicoa, D.R.; Ruiz, J.V.; Mendoza, E.P. Comportamiento agronómico y composición química de tres variedades de Brachiaria en diferentes edades de cosecha. Cienc. Tecnol. 2008, 1, 87–94. [CrossRef] 34. Fonseca, P.G.; Emerenciano, N.J.; Dos Santos, D.G.; Cortes, A.C.; De Oliveira, L.P.; Da Silva Santos, R. Production and quality of tropical grasses at different regrowth intervals in the Brazilian semiarid. Acta Sci. 2021, 43, e52842. [CrossRef] 35. Canchila, E.R.; Soca, M.; Ojeda, F.; Machado, R. Evaluación de la composición bromatológica de 24 accesiones de Brachiaria spp. Pastos Forrajes 2009, 32, 1–9. 36. Liu, J.; Duan, C.; Zhang, X.; Zhu, Y.; Lu, X. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J. Hazard. Mater. 2011, 188, 85–91. [CrossRef] 37. Rodríguez-Rodríguez, N.; Rivera-Cruz, M.C.; Trujillo-Narcía, A.; Almaráz-Suárez, J.J.; Salgado-García, S. Spatial Distribution of Oil and Biostimulation Through the Rhizosphere of Leersia hexandra in Degraded Soil. Water Air Soil Pollut. 2016, 227, 319. [CrossRef] 38. Muñoz-González, J.C.; Huerta-Bravo, M.; Lara, B.A.; Rangel, S.R.; De la Rosa, A.J. Production and nutritional quality of forages in conditions Humid Tropics of Mexico. Rev. Mex. Cienc. Agríc. Pub. Esp. 2016, 16, 3315–3327. 39. Harper, K.J.; McNeill, D.M. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture 2015, 5, 778–790. [CrossRef] 40. Carrillo-Díaz, M.I.; Miranda-Romero, L.A.; Chávez-Aguilar, G.; Zepeda-Batista, J.L.; González-Reyes, M.; García-Casillas, A.C.; Tirado-González, D.N.; Tirado-Estrada, G. Improvement of Ruminal Neutral Detergent Fiber Degradability by Obtaining and Using Exogenous Fibrolytic Enzymes from White-Rot Fungi. Animals 2022, 12, 843. [CrossRef] [PubMed] 41. Mwendia, S.W.; Ohmstedt, U.; Nyakundi, F.; Notenbaert, A.; Peters, P. Does harvesting Urochloa and Megathyrsus forages at short intervals confer an advantage on cumulative dry matter yields and quality? J. Sci. Food Agric. 2022, 102, 750–756. [CrossRef] 42. Fonseca-Pereira, G.; Emerenciano-Neto, J.V.; dos Santos-Difante, G.; Cortes-Assis, L.C.; de Oliveira-Lima, P. Morphogenic and structural characteristics of tropical forage grasses managed under different regrowth periods in the Brazilian semi-arid region. Semin. Ciências Agrárias 2019, 40, 283–292. [CrossRef] 43. Bhatta, R.; Tajima, K.; Kurihara, M. Influence of temperature and pH on fermentation pattern and methane production in the rumen simulating fermenter (RUSITEC). Asian-Aust. J. Anim. Sci. 2006, 19, 376–380. [CrossRef] 44. Gaviria-Uribe, X.; Bolívar-Vergara, D.M.; Chirinda, N.; Molina-Botero, I.C.; Mazabel, J.; Barahona-Rosales, R.; Arango, J. In vitro methane production and ruminal fermentation parameters of tropical grasses and grass-legume associations commonly used for cattle feeding in the tropics. Livest. Res. Rural Dev. 2022, 34, 1–17. 45. Wilson-García, C.Y.; Sánchez-Santillán, P.; López-Zerón, N.E.; Domínguez-Rodríguez, I.E.; Ayala-Monter, M.A.; Torres-Salado, N.; Valenzuela Lagarda, J.L. In vitro fermentative characteristics and chemical quality of Guinea grass with organic and chemical fertilization Agro Productividad. Agro Product. 2022, 15, 79–86. [CrossRef] 46. Kamalak, A.; Canbolat, O.; Gurbuz, Y.; Ozay, O. Comparison of in vitro gas production technique with in situ nylon bag technique to estimate dry matter degradation. Czech J. Anim. Sci. 2005, 50, 60–67. [CrossRef] 47. Makkar, H.P. In vitro gas methods for evaluation of feeds containing phytochemicals. Anim. Feed Sci. Technol. 2005, 123–124, 291–302. [CrossRef] 48. Vélez, O.M.; Campos, R.; Sánchez, H. Uso de metabolitos secundarios de las Plantas para reducir la metanogénesis ruminal. Trop. Subtrop. Agroecos. 2014, 17, 489–499. 49. Miguel, M.A.; Lee, S.S.; Mamuad, L.L.; Choi, Y.J.; Jeong, C.D.; Son, A.; Cho, K.K.; Kim, E.T.; Kim, S.B.; Lee, S.S. Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum. J. Microbiol. Biotechnol. 2019, 29, 1083–1095. [CrossRef] [PubMed] 50. Banik, B.K.; Durmic, Z.; Erskine, W.; Ghamkhar, K.; Revell, C. In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia. Crop Pasture Sci. 2013, 64, 935–942. [CrossRef] 51. Giraldo-Parra, P.A. Efecto de Varios Aditivos y Suplementos Nutricionales en las Emisiones de Metano y los Parámetros de la Fermentación Ruminal In Vitro; Tesis Maestría en Ciencias Agrarias, Universidad Nacional de Colombia Medellín: Medellín, Colombia, 2013. 52. Bryant, M.P.; Robinson, I.M. Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol. 1962, 84, 605–614. [CrossRef] 53. Leng, R.A. Factors affecting the utilization of “poor-quality” forages by ruminants particularly under tropical conditions. Nutr. Res. Rev. 1990, 3, 277–303. [CrossRef] 54. Marín, A.; Giraldo, L.A.; Correa, G. Parámetros de fermentación ruminal in vitro del pasto Kikuyo (Pennisetum clandestinum). Livest. Res. Rural Dev. 2014, 26, 1–6. 55. Ley de Coss, A.; Guerra-Medina, C.; Montañez-Valdez, O.; Guevara, F.; Pinto, R.; Reyes-Gutiérrez, J. In vitro production of gas methane by tropical grasses. Rev. MVZ Córdoba 2018, 23, 6788–6798. [CrossRef] 56. Vélez-Terranova, M.; Campos-Gaona, R.; Sánchez-Guerrero, H.; Giraldo, L.A. Fermentation dynamics and methane production of diets based on Brachiaria humidicola with high inclusion Levels of Enterolobium schomburgkii and Senna occidentalis in a Rusitec system. Trop. Subtrop. Agroecos. 2018, 21, 163–175. 57. Kulivand, M.; Kafilzadeh, F. Correlation between chemical composition, kinetics of fermentation and methane production of eight pasture grasses. Acta Sci. Anim. Sci. Mar. 2015, 37, 9–14. [CrossRef] 58. Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. [CrossRef] 59. Meale, S.J.; Chaves, A.V.; Baah, J.; McAllister, T.A. Methane Production of Different Forages in In vitro Ruminal Fermentation. Asian-Aust. J. Anim. Sci. 2012, 25, 86–91. [CrossRef] 60. Montalvão Lima, D.; Abdalla Filho, A.L.; Tavares Lima, P.M.; Zanuto Sakita, G.; Dias e Silva, T.P.; McManus, C.; Abdalla, A.L.; Louvandini, H. Morphological characteristics, nutritive quality, and methane production of tropical grasses in Brazil. Pesq. Agropec. Bras. 2018, 53, 323–331. [CrossRef] 61. Kondo, M.; Yoshida, M.; Loresco, M.; Lapitan, R.M.; Herrera, J.R.; Del Barrio, A.N.; Uyeno, Y.; Matsui, H.; Fujihara, T. Nutrient Contents and In vitro Ruminal Fermentation of Tropical Grasses Harvested in Wet Season in the Philippines. Adv. Anim. Vet. Sci. 2015, 3, 694–699. [CrossRef] 62. Chino Velasquez, L.B.; Molina-Botero, I.C.; Moscoso Muñoz, J.E.; Gómez Bravo, C. Relationship between Chemical Composition and In Vitro Methane Production of High Andean Grasses. Animals 2022, 12, 2348. [CrossRef] [PubMed]; https://doi.org/10.3390/ani13172760Test; https://hdl.handle.net/20.500.12494/52599Test; Vélez-Terranova, Salamanca-Carreño, Vargas-Corzo, Parés-Casanova, Ariaz-Landazábal. 2023. Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia. Animals, 13 (17), 2760: 1-16.

  6. 6
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Ces. Med. Vet. Zoote.; Vargas Naranjo, S. A., Rosero Noguera, R., & Barahona Rosales, R. (2015). Cinética de la degradabilidad in vitro de ensilajes de Maralfalfa (Pennisetum sp.) con diferentes niveles de inclusión y concentración de vinaza de caña (Saccharum officinarum). CES Medicina Veterinaria Y Zootecnia, 10(2), 82–94. Recuperado a partir de https://revistas.ces.edu.co/index.php/mvz/article/view/3642Test; http://hdl.handle.net/10495/14045Test

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    تقرير
  10. 10