يعرض 1 - 10 نتائج من 61 نتيجة بحث عن '"Rizzolo, A"', وقت الاستعلام: 1.24s تنقيح النتائج
  1. 1

    المؤلفون: D. Marcuzzi, V. Toigo, M. Boldrin, G. Chitarin, S. Dal Bello, L. Grando, A. Luchetta, R. Pasqualotto, M. Pavei, G. Serianni, L. Zanotto, R. Agnello, P. Agostinetti, M. Agostini, D. Aprile, M. Barbisan, M. Battistella, G. Berton, M. Bigi, M. Brombin, V. Candela, V. Candeloro, A. Canton, R. Casagrande, C. Cavallini, R. Cavazzana, L. Cordaro, N. Cruz, M. Dalla Palma, M. Dan, A. De Lorenzi, R. Delogu, M. De Muri, M. De Nardi, S. Denizeau, M. Fadone, F. Fellin, A. Ferro, E. Gaio, C. Gasparrini, F. Gnesotto, P. Jain, A. La Rosa, D. Lopez-Bruna, R. Lorenzini, A. Maistrello, G. Manduchi, S. Manfrin, N. Marconato, I. Mario, G. Martini, R. Milazzo, T. Patton, S. Peruzzo, N. Pilan, A. Pimazzoni, C. Poggi, N. Pomaro, B. Pouradier-Duteil, M. Recchia, A. Rigoni-Garola, D. Rizzetto, A. Rizzolo, F. Santoro, E. Sartori, B. Segalini, A. Shepherd, M. Siragusa, P. Sonato, A. Sottocornola, E. Spada, S. Spagnolo, M. Spolaore, C. Taliercio, P. Tinti, P. Tomsič, L. Trevisan, M. Ugoletti, M. Valente, M. Valisa, F. Veronese, M. Vignando, P. Zaccaria, R. Zagorski, B. Zaniol, M. Zaupa, M. Zuin, M. Cavenago, D. Boilson, C. Rotti, H. Decamps, F. Geli, A. Sharma, P. Veltri, J. Zacks, M. Simon, F. Paolucci, A. Garbuglia, D. Gutierrez, A. Masiello, G. Mico, C. Labate, P. Readman, E. Bragulat, L. Bailly-Maitre, G. Gomez, G. Kouzmenko, F. Albajar, M. Kashiwagi, H. Tobari, A. Kojima, M. Murayama, S. Hatakeyama, E. Oshita, T. Maejima, N. Shibata, Y. Yamashita, K. Watanabe, N.P. Singh, M.J. Singh, H. Dhola, U. Fantz, B. Heinemann, C. Wimmer, D. Wünderlich, K. Tsumori, G. Croci, G. Gorini, A. Muraro, M. Rebai, M. Tardocchi, L. Giacomelli, D. Rigamonti, F. Taccogna, D. Bruno, M. Rutigliano, S. Longo, S. Deambrosis, E. Miorin, F. Montagner, A. Tonti, F. Panin

    المساهمون: Marcuzzi, D, Toigo, V, Boldrin, M, Chitarin, G, Dal Bello, S, Grando, L, Luchetta, A, Pasqualotto, R, Pavei, M, Serianni, G, Zanotto, L, Agnello, R, Agostinetti, P, Agostini, M, Aprile, D, Barbisan, M, Battistella, M, Berton, G, Bigi, M, Brombin, M, Candela, V, Candeloro, V, Canton, A, Casagrande, R, Cavallini, C, Cavazzana, R, Cordaro, L, Cruz, N, Dalla Palma, M, Dan, M, De Lorenzi, A, Delogu, R, De Muri, M, De Nardi, M, Denizeau, S, Fadone, M, Fellin, F, Ferro, A, Gaio, E, Gasparrini, C, Gnesotto, F, Jain, P, La Rosa, A, Lopez-Bruna, D, Lorenzini, R, Maistrello, A, Manduchi, G, Manfrin, S, Marconato, N, Mario, I, Martini, G, Milazzo, R, Patton, T, Peruzzo, S, Pilan, N, Pimazzoni, A, Poggi, C, Pomaro, N, Pouradier-Duteil, B, Recchia, M, Rigoni-Garola, A, Rizzetto, D, Rizzolo, A, Santoro, F, Sartori, E, Segalini, B, Shepherd, A, Siragusa, M, Sonato, P, Sottocornola, A, Spada, E, Spagnolo, S, Spolaore, M, Taliercio, C, Tinti, P, Tomsic, P, Trevisan, L, Ugoletti, M, Valente, M, Valisa, M, Veronese, F, Vignando, M, Zaccaria, P, Zagorski, R, Zaniol, B, Zaupa, M, Zuin, M, Cavenago, M, Boilson, D, Rotti, C, Decamps, H, Geli, F, Sharma, A, Veltri, P, Zacks, J, Simon, M, Paolucci, F, Garbuglia, A, Gutierrez, D, Masiello, A, Mico, G, Labate, C, Readman, P, Bragulat, E, Bailly-Maitre, L, Gomez, G, Kouzmenko, G, Albajar, F, Kashiwagi, M, Tobari, H, Kojima, A, Murayama, M, Hatakeyama, S, Oshita, E, Maejima, T, Shibata, N, Yamashita, Y, Watanabe, K, Singh, N, Singh, M, Dhola, H, Fantz, U, Heinemann, B, Wimmer, C, Wunderlich, D, Tsumori, K, Croci, G, Gorini, G, Muraro, A, Rebai, M, Tardocchi, M, Giacomelli, L, Rigamonti, D, Taccogna, F, Bruno, D, Rutigliano, M, Longo, S, Deambrosis, S, Miorin, E, Montagner, F, Tonti, A, Panin, F

    المصدر: Fusion Engineering and Design

    الوصف: ITER envisages the use of two heating neutral beam injectors plus an optional one as part of the auxiliary heating and current drive system, to reach the desired performances during its various phases of operation. The 16.5 MW expected neutral beam power per injector is several notches higher than worldwide existing facilities.In order to enable such development, a Neutral Beam Test Facility (NBTF) was established at Consorzio RFX, exploiting the synergy of two test beds, called SPIDER and MITICA. SPIDER is dedicated developing and char-acterizing large efficient negative ion sources at relevant parameters in ITER-like conditions: source and accel-erator located in the same vacuum where the beam propagates, immunity to electromagnetic interferences of multiple radio-frequency (RF) antennas, avoidance of RF-induced discharges on the outside of the source. Three years of experiments on SPIDER have addressed to the necessary design modifications to enable full perfor-mances. The source is presently under a long shut-down phase to incorporate learnings from the experimental campaign, in particular events/issues occurred during operation, which led to the identification of improvement opportunities/necessities (e.g. RF discharges, local burns, water leaks, other damages, configuration/design upgrades to maximize chances/margin to quest target parameters).Parallelly, developments on MITICA, the full-scale prototype of the ITER Neutral Beam Injector (NBI) featuring a 1 MV accelerator and ion neutralization, are underway including manufacturing of the beam source, accel-erator and the beam line components, while power supplies and auxiliary plants, already installed, are under final testing and commissioning.Integration, commissioning and tests of the 1 MV power supplies are essential for this first-of-kind system, unparalleled both in research and industry field. 1.2 MV dc insulating tests of high voltage components were successfully completed. The integrated test to confirm 1 MV output by combining invertor systems, DC gener-ators and transmission lines extracted errors/accidents in some components. To realize a concrete system for ITER, said events have been addressed and solutions for the repair and the improvement of the system were developed.Hence, NBTF is emerging as a necessary facility, due to the large gap with existing injectors, effectively dedicated to identify issues and find solutions to enable successful ITER NBI operations in a time bound fashion. The lessons learned during the implementation on NBTF and future perspectives are here discussed.

    وصف الملف: application/pdf; STAMPA

  2. 2
    دورية أكاديمية
  3. 3
  4. 4
    دورية أكاديمية

    المساهمون: Regione del Veneto, European Regional Development Fund

    المصدر: Fusion Engineering and Design ; volume 194, page 113890 ; ISSN 0920-3796

  5. 5
  6. 6

    المؤلفون: M. Tardocchi, G. Mico, Hitesh Patel, V. Antoni, A. Garbuglia, A. Masiello, Emanuele Sartori, L. Giacomelli, M. Brombin, F. Geli, A. De Lorenzi, Pierluigi Veltri, Piero Agostinetti, Gabriele Manduchi, S. Cristofaro, T. Maejima, D. Bruno, F. Paolucci, Marica Rebai, L. Cordaro, M. Zaupa, B. Pouradier-Duteil, S. Denizeau, M. Vignando, R. Lorenzini, Y. Yamashita, M. Dan, R. Casagrande, D. Lopez-Bruna, Federica Bonomo, R. Zagorski, M. Siragusa, M. Zuin, A. Rigoni-Garola, V. Candeloro, Daniel Gutierrez, H. Decamps, C. Taliercio, Loris Zanotto, F. Fellin, C. Rotti, M. Fadone, R. Delogu, M. Valente, M. Bigi, A. Canton, Gabriele Croci, R. Agnello, A. Pimazzoni, Bernd Heinemann, Emilio Martines, O. McCormack, M. Dalla Palma, Kazuhiro Watanabe, J. Graceffa, Nicola Pilan, Simone Peruzzo, Vanni Toigo, E. Oshita, A. Rizzolo, Elena Gaio, D. Aprile, M. Dremel, M. De Muri, B. Zaniol, R. Milazzo, C. Cavallini, Silvia Spagnolo, Gianluigi Serianni, N. Cruz, A. Sottocornola, Claudia Gasparrini, Hiroyuki Tobari, L. Trevisan, Namita Singh, P. Tomsic, T. Patton, F. Gasparini, F. Taccogna, Diego Marcuzzi, Atsushi Kojima, E. Spada, A. Muraro, Ursel Fantz, M. Pavei, A.K. Chakraborty, Francesco Gnesotto, A. Ferro, S. Konno, Tullio Bonicelli, Roberto Cavazzana, Giuseppe Chitarin, Nicolò Marconato, Giuseppe Gorini, Adriano Luchetta, A. Maistrello, A. Zamengo, C. Poggi, Marco D’Arienzo, N. Pomaro, F. Panin, A. Rousseau, Monica Spolaore, G. Berton, J.F. Moreno, W. Kraus, S. Dal Bello, M. Battistella, P. Tinti, G. Kouzmenko, D. Boilson, Piergiorgio Sonato, Marco Cavenago, C. Wimmer, M. J. Singh, M. Rutigliano, P. Jain, Pierluigi Zaccaria, M. Ugoletti, Marco Boldrin, D. Rigamonti, Katsuyoshi Tsumori, S. Manfrin, D. Wünderlich, Gwenael Fubiani, Muriel Simon, G. Martini, G. Agarici, Mieko Kashiwagi, D. Terranova, Marco Barbisan, S. Martini, M. Urbani, Luca Grando, Roberto Pasqualotto, J. Zacks, A. Tonti, M. Recchia, C. Labate, Matteo Agostini, P.B. Krastev, V. Pilard, G. Gomez, A. Shepherd

    المساهمون: Toigo, V, Marcuzzi, D, Serianni, G, Boldrin, M, Chitarin, G, Bello, S, Grando, L, Luchetta, A, Pasqualotto, R, Zaccaria, P, Zanotto, L, Agnello, R, Agostinetti, P, Agostini, M, Antoni, V, Aprile, D, Barbisan, M, Battistella, M, Berton, G, Bigi, M, Brombin, M, Candeloro, V, Canton, A, Casagrande, R, Cavallini, C, Cavazzana, R, Cordaro, L, Cruz, N, Palma, M, Dan, M, De Lorenzi, A, Delogu, R, De Muri, M, Denizeau, S, Fadone, M, Fellin, F, Ferro, A, Gaio, E, Gasparini, F, Gasparrini, C, Gnesotto, F, Jain, P, Krastev, P, Lopez-Bruna, D, Lorenzini, R, Maistrello, A, Manduchi, G, Manfrin, S, Marconato, N, Martines, E, Martini, G, Martini, S, Milazzo, R, Patton, T, Pavei, M, Peruzzo, S, Pilan, N, Pimazzoni, A, Poggi, C, Pomaro, N, Pouradier-Duteil, B, Recchia, M, Rigoni-Garola, A, Rizzolo, A, Sartori, E, Shepherd, A, Siragusa, M, Sonato, P, Sottocornola, A, Spada, E, Spagnolo, S, Spolaore, M, Taliercio, C, Terranova, D, Tinti, P, Tomsic, P, Trevisan, L, Ugoletti, M, Valente, M, Vignando, M, Zagorski, R, Zamengo, A, Zaniol, B, Zaupa, M, Zuin, M, Cavenago, M, Boilson, D, Rotti, C, Veltri, P, Decamps, H, Dremel, M, Graceffa, J, Geli, F, Urbani, M, Zacks, J, Bonicelli, T, Paolucci, F, Garbuglia, A, Agarici, G, Gomez, G, Gutierrez, D, Kouzmenko, G, Labate, C, Masiello, A, Mico, G, Moreno, J, Pilard, V, Rousseau, A, Simon, M, Kashiwagi, M, Tobari, H, Watanabe, K, Maejima, T, Kojima, A, Oshita, E, Yamashita, Y, Konno, S, Singh, M, Chakraborty, A, Patel, H, Singh, N, Fantz, U, Bonomo, F, Cristofaro, S, Heinemann, B, Kraus, W, Wimmer, C, Wunderlich, D, Fubiani, G, Tsumori, K, Croci, G, Gorini, G, Mccormack, O, Muraro, A, Rebai, M, Tardocchi, M, Giacomelli, L, Rigamonti, D, Taccogna, F, Bruno, D, Rutigliano, M, D'Arienzo, M, Tonti, A, Panin, F

    المصدر: Fusion Engineering and Design
    Fusion engineering and design 168 (2021): 112622-1–112622-10. doi:10.1016/j.fusengdes.2021.112622
    info:cnr-pdr/source/autori:Toigo V.; Marcuzzi D.; Serianni G.; Boldrin M.; Chitarin G.; Dal Bello S.; Grando L.; Luchetta A.; Pasqualotto R.; Zaccaria P.; Zanotto L.; Agnello R.; Agostinetti P.; Agostini M.; Antoni V.; Aprile D.; Barbisan M.; Battistella M.; Berton G.; Bigi M.; Brombin M.; Candeloro V.; Canton A.; Casagrande R.; Cavallini C.; Cavazzana R.; Cordaro L.; Cruz N.; Dalla Palma M.; Dan M.; De Lorenzi A.; Delogu R.; De Muri M.; Denizeau S.; Fadone M.; Fellin F.; Ferro A.; Gaio E.; Gasparini F.; Gasparrini C.; Gnesotto F.; Jain P.; Krastev P.; Lopez-Bruna D.; Lorenzini R.; Maistrello A.; Manduchi G.; Manfrin S.; Marconato N.; Martines E.; Martini G.; Martini S.; Milazzo R.; Patton T.; Pavei M.; Peruzzo S.; Pilan N.; Pimazzoni A.; Poggi C.; Pomaro N.; Pouradier-Duteil B.; Recchia M.; Rigoni-Garola A.; Rizzolo A.; Sartori E.; Shepherd A.; Siragusa M.; Sonato P.; Sottocornola A.; Spada E.; Spagnolo S.; Spolaore M.; Taliercio C.; Terranova D.; Tinti P.; Tomsic P.; Trevisan L.; Ugoletti M.; Valente M.; Vignando M.; Zagorski R.; Zamengo A.; Zaniol B.; Zaupa M.; Zuin M.; Cavenago M.; Boilson D.; Rotti C.; Veltri P.; Decamps H.; Dremel M.; Graceffa J.; Geli F.; Urbani M.; Zacks J.; Bonicelli T.; Paolucci F.; Garbuglia A.; Agarici G.; Gomez G.; Gutierrez D.; Kouzmenko G.; Labate C.; Masiello A.; Mico G.; Moreno J-F.; Pilard V.; Rousseau A.; Simon M.; Kashiwagi M.; Tobari H.; Watanabe K.; Maejima T.; Kojima A.; Oshita E.; Yamashita Y.; Konno S.; Singh M.; Chakraborty A.; Patel H.; Singh N.; Fantz U.; Bonomo F.; Cristofaro S.; Heinemann B.; Kraus W.; Wimmer C.; Wunderlich D.; Fubiani G.; Tsumori K.; Croci G.; Gorini G.; McCormack O.; Muraro A.; Rebai M.; Tardocchi M.; Giacomelli L.; Rigamonti D.; Taccogna F.; Bruno D.; Rutigliano M.; D'Arienzo M.; Tonti A.; Panin F./titolo:On the road to ITER NBIs: SPIDER improvement after first operation and MITICA construction progress/doi:10.1016%2Fj.fusengdes.2021.112622/rivista:Fusion engineering and design/anno:2021/pagina_da:112622-1/pagina_a:112622-10/intervallo_pagine:112622-1–112622-10/volume:168

    الوصف: To reach fusion conditions and control the plasma configuration in ITER, the next step in tokamak fusion research, two neutral beam injectors (NBIs) will supply 16.5 MW each, by neutralizing accelerated negative hydrogen or deuterium ions. The requirements of ITER NBIs (40A/1 MeV D- ions for ≤1 h, 46A/870 keV H- ions for ≤1000 s) have never been simultaneously attained. So in the Neutral Beam Test Facility (NBTF, Consorzio RFX, Italy) the operation of the full-scale ITER NBI prototype (MITICA) will be tested and optimised up to full performances, focussing on accelerator (including voltage holding), beam optics, neutralisation, residual ion removal. The NBTF includes also the full-scale prototype of the ITER NBI source with 100 keV particle energy (SPIDER), for early investigation of: negative ion production and extraction, source uniformity, negative ion current density and beam optics. This paper will describe the main results of the first two years of SPIDER operation, devoted to characterizing plasma and beam parameters, including investigation of RF-plasma coupling efficiency and magnetic filter field effectiveness in reducing co-extracted electrons. SPIDER is progressing towards the first caesium injection, which aims at increasing the negative ion density. A major shutdown, planned for 2021, to solve the issues identified during the operation and to carry out programmed modifications, will be outlined. The installation of each MITICA power supply and auxiliary system is completed; in-vessel mechanical components are under procurement by Fusion for Energy (F4E). Integration, commissioning and test of the power supplies, procured by F4E and QST, as the Japanese Domestic Agency (JADA), will be presented. In particular, 1.0MV insulating tests were carried out step-by-step and successfully completed. In 2020 integrated tests of the power supplies on the accelerator dummy load started, including the assessment of their resilience to accelerator grid breakdowns using a short-circuit device located in vacuum. The aggressive programme, to validate the NBI design at NBTF and to meet ITER schedule (requiring NBIs in operation in 2032), will be outlined. Unfortunately, in 2020 the coronavirus disease infection affected the NBTF activities. A solution to proceed with integrated power tests despite the coronavirus is presented.

    وصف الملف: application/pdf

  7. 7

    المصدر: Fusion engineering and design 146 (2019): 676–679. doi:10.1016/j.fusengdes.2019.01.053
    info:cnr-pdr/source/autori:Rizzolo, Andrea; Barbisan, Marco; Bizzotto, Luisa; Capobianco, Roberto; De Muri, Michela; Fadone, Michele; Ghiraldelli, Raffaele; Gorno, Sophie; Laterza, Bruno; Marchiori, Giuseppe; Marcuzzi, Diego; Migliorato, Luisa; Molon, Federico; Ravarotto, Diego; Rizzieri, Roberto; Rossetto, Federico; Sartori, Emanuele; Serianni, Gianluigi; Veltri, Pierluigi/titolo:Characterization of the SPIDER Cs oven prototype in the CAesium Test Stand for the ITER HNB negative ion sources/doi:10.1016%2Fj.fusengdes.2019.01.053/rivista:Fusion engineering and design/anno:2019/pagina_da:676/pagina_a:679/intervallo_pagine:676–679/volume:146

    الوصف: The ITER Heating Neutral Beam (HNB) injector is required to deliver 16.7 MW of power to the plasma from a neutralized beam of H−/D− negative ions, produced by an RF source and accelerated up to 1 MeV. To enhance the H−/D− production, Cs will be routinely evaporated in the source by means of specific ovens embedded in the source, to reduce its work function. Controlling and monitoring the evaporation rate of Cs inside the source will be fundamental to achieve the desired performance for the ITER HNB. The prototype RF negative ion source SPIDER has been developed and built in the Neutral Beam Test Facility at Consorzio RFX. In SPIDER, liquid Cs based ovens will be used to inject Cs vapors inside the source. The CAesium Test Stand (CATS) has been specifically designed and set up for testing, commissioning, and characterizing Cs ovens in vacuum, but also to study the Cs evaporation and deposition onto surfaces. A SPIDER Cs oven prototype has been manufactured and tested in CATS in order to characterize its thermal behavior, by means of thermocouples and thermal camera, and its Cs flux, by means of Surface Ionization Detectors and Laser Absorption Spectroscopy.

  8. 8

    المصدر: Fusion engineering and design 146 (2019): 2707–2711. doi:10.1016/j.fusengdes.2019.04.092
    info:cnr-pdr/source/autori:Barbisan, M.; Pasqualotto, R.; Rizzolo, A./titolo:Design and preliminary operation of a laser absorption diagnostic for the SPIDER RF source/doi:10.1016%2Fj.fusengdes.2019.04.092/rivista:Fusion engineering and design/anno:2019/pagina_da:2707/pagina_a:2711/intervallo_pagine:2707–2711/volume:146

    الوصف: The ITER Heating Neutral Beam (HNB) injector is required to deliver 16.7 MW power into the plasma from a neutralised beam of H-/D- negative ions, produced by an RF source and accelerated up to 1 MeV. To enhance the H-/D- production, the surface of the acceleration system grid facing the source (the plasma grid) will be coated with Cs because of its low work function. Cs will be routinely evaporated in the source by means of specific ovens. Monitoring the evaporation rate and the distribution of Cs inside the source is fundamental to get the desired performances on the ITER HNB. In order to proper design the source of the ITER HNB and to identify the best operation practices for it, the prototype RF negative ion source SPIDER has been developed and built in the Neutral Beam Test Facility at Consorzio RFX. A Laser Absorption Spectroscopy diagnostic will be installed in SPIDER for a quantitative estimation of Cs density. By using a wavelength tunable laser, the diagnostic will measure the absorption spectrum of the 852 nm line along 4 lines of sight, parallel to the plasma grid surface and close to it. From the absorption spectra the line-integrated density of Cs at ground state will be measured. The design of this diagnostic for SPIDER is presented, with details of the layout and of the key components. A preliminary installation of the diagnostic on the test stand for Cs ovens is also described, together with its first experimental results; the effect of ground state depopulation on collected measurements is discussed and partially corrected.
    Comment: 6 pages, 5 figures. Contributed paper for the SOFT 2018 conference. Accepted manuscript (embargo expired)

  9. 9
    دورية أكاديمية
  10. 10

    المصدر: Fusion engineering and design 136 (2018): 1605–1613. doi:10.1016/j.fusengdes.2018.05.066
    info:cnr-pdr/source/autori:Peruzzo S.; Bernardi M.; Cavazzana R.; Dal Bello S.; Dalla Palma M.; Grando L.; Perin E.; Piovan R.; Rizzolo A.; Rossetto F.; Ruaro D.; Siragusa M.; Sonato P.; Trevisan L./titolo:Detailed design of the RFX-mod2 machine load assembly/doi:10.1016%2Fj.fusengdes.2018.05.066/rivista:Fusion engineering and design/anno:2018/pagina_da:1605/pagina_a:1613/intervallo_pagine:1605–1613/volume:136
    Fusion Engineering and Design

    الوصف: An upgrade of the RFX-mod experiment is presently in the final design phase, aimed at widening the explored operational scenarios both in RFP and Tokamak configuration. The main design driver for this machine upgrade is the enhancement of the ‘shell-plasma proximity’, which is expected to provide a significant improvement in the plasma magnetic confinement. The achievement of this aim implies a major change of the internal components of the machine such as the removal of the present vacuum vessel, transferring the function of vacuum barrier to the duly modified toroidal support structure, and the integration of a new in-vessel support system to sustain the conductive stabilizing shell and the whole first wall. The paper presents an overview of the design choices and the proposed implementations, assessed on the base of engineering analyses and results of experimental tests performed on mock-ups of the new components. The solutions conceived to fulfill vacuum and electrical requirements of the in-vessel components, to guarantee their reliability during normal and abnormal operating conditions events, and interface compatibility with existing components and torus assembly sequence are finally highlighted.