دورية أكاديمية

Attenuation of Cigarette-Smoke-Induced Oxidative Stress, Senescence, and Inflammation by Berberine-Loaded Liquid Crystalline Nanoparticles: In Vitro Study in 16HBE and RAW264.7 Cells

التفاصيل البيبلوغرافية
العنوان: Attenuation of Cigarette-Smoke-Induced Oxidative Stress, Senescence, and Inflammation by Berberine-Loaded Liquid Crystalline Nanoparticles: In Vitro Study in 16HBE and RAW264.7 Cells
المؤلفون: Keshav Raj Paudel, Nisha Panth, Bikash Manandhar, Sachin Kumar Singh, Gaurav Gupta, Peter R. Wich, Srinivas Nammi, Ronan MacLoughlin, Jon Adams, Majid Ebrahimi Warkiani, Dinesh Kumar Chellappan, Brian G. Oliver, Philip M. Hansbro, Kamal Dua
المصدر: Antioxidants, Vol 11, Iss 5, p 873 (2022)
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
المجموعة: LCC:Therapeutics. Pharmacology
مصطلحات موضوعية: cigarette smoking, airway inflammation, oxidative stress, senescence, berberine, liquid crystalline nanoparticles, Therapeutics. Pharmacology, RM1-950
الوصف: Cigarette smoke is considered a primary risk factor for chronic obstructive pulmonary disease. Numerous toxicants present in cigarette smoke are known to induce oxidative stress and airway inflammation that further exacerbate disease progression. Generally, the broncho-epithelial cells and alveolar macrophages exposed to cigarette smoke release massive amounts of oxidative stress and inflammation mediators. Chronic exposure of cigarette smoke leads to premature senescence of airway epithelial cells. This impairs cellular function and ultimately leads to the progression of chronic lung diseases. Therefore, an ideal therapeutic candidate should prevent disease progression by controlling oxidative stress, inflammation, and senescence during the initial stage of damage. In our study, we explored if berberine (an alkaloid)-loaded liquid crystalline nanoparticles (berberine-LCNs)-based treatment to human broncho-epithelial cells and macrophage inhibits oxidative stress, inflammation, and senescence induced by cigarette-smoke extract. The developed berberine-LCNs were found to have favourable physiochemical parameters, such as high entrapment efficiency and sustained in vitro release. The cellular-assay observations revealed that berberine-LCNs showed potent antioxidant activity by suppressing the generation of reactive oxygen species in both broncho-epithelial cells (16HBE) and macrophages (RAW264.7), and modulating the genes involved in inflammation and oxidative stress. Similarly, in 16HBE cells, berberine-LCNs inhibited the cigarette smoke-induced senescence as revealed by X-gal staining, gene expression of CDKN1A (p21), and immunofluorescent staining of p21. Further in-depth mechanistic investigations into antioxidative, anti-inflammatory, and antisenescence research will diversify the current findings of berberine as a promising therapeutic approach for inflammatory lung diseases caused by cigarette smoking.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2076-3921
العلاقة: https://www.mdpi.com/2076-3921/11/5/873Test; https://doaj.org/toc/2076-3921Test
DOI: 10.3390/antiox11050873
الوصول الحر: https://doaj.org/article/9614c03c8e324b1eac1aacc26d540011Test
رقم الانضمام: edsdoj.9614c03c8e324b1eac1aacc26d540011
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20763921
DOI:10.3390/antiox11050873