دورية أكاديمية

Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics

التفاصيل البيبلوغرافية
العنوان: Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics
المؤلفون: Khalil Tamersit, Abdellah Kouzou, José Rodriguez, Mohamed Abdelrahem
المصدر: Nanomaterials, Vol 14, Iss 11, p 962 (2024)
بيانات النشر: MDPI AG, 2024.
سنة النشر: 2024
المجموعة: LCC:Chemistry
مصطلحات موضوعية: vacuum, radiation hardness, carbon nanotube (CNT), graphene nanoribbon (GNR), field-effect transistor (FET), tunnel FET (TFET), Chemistry, QD1-999
الوصف: This paper investigates the performance of vacuum gate dielectric doping-free carbon nanotube/nanoribbon field-effect transistors (VGD-DL CNT/GNRFETs) via computational analysis employing a quantum simulation approach. The methodology integrates the self-consistent solution of the Poisson solver with the mode space non-equilibrium Green’s function (NEGF) in the ballistic limit. Adopting the vacuum gate dielectric (VGD) paradigm ensures radiation-hardened functionality while avoiding radiation-induced trapped charge mechanisms, while the doping-free paradigm facilitates fabrication flexibility by avoiding the realization of a sharp doping gradient in the nanoscale regime. Electrostatic doping of the nanodevices is achieved via source and drain doping gates. The simulations encompass MOSFET and tunnel FET (TFET) modes. The numerical investigation comprehensively examines potential distribution, transfer characteristics, subthreshold swing, leakage current, on-state current, current ratio, and scaling capability. Results demonstrate the robustness of vacuum nanodevices for high-performance, radiation-hardened switching applications. Furthermore, a proposal for extrinsic enhancement via doping gate voltage adjustment to optimize band diagrams and improve switching performance at ultra-scaled regimes is successfully presented. These findings underscore the potential of vacuum gate dielectric carbon-based nanotransistors for ultrascaled, high-performance, energy-efficient, and radiation-immune nanoelectronics.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 14110962
2079-4991
العلاقة: https://www.mdpi.com/2079-4991/14/11/962Test; https://doaj.org/toc/2079-4991Test
DOI: 10.3390/nano14110962
الوصول الحر: https://doaj.org/article/2bc78aeec9404e558239d414bea07db1Test
رقم الانضمام: edsdoj.2bc78aeec9404e558239d414bea07db1
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14110962
20794991
DOI:10.3390/nano14110962