دورية أكاديمية

Ginkgo biloba induces different gene expression signatures and oncogenic pathways in malignant and non-malignant cells of the liver.

التفاصيل البيبلوغرافية
العنوان: Ginkgo biloba induces different gene expression signatures and oncogenic pathways in malignant and non-malignant cells of the liver.
المؤلفون: Czauderna, Carolin, Palestino-Dominguez, Mayrel, Castven, Darko, Becker, Diana, Zanon-Rodriguez, Luis, Hajduk, Jovana, Mahn, Friederike L., Herr, Monika, Strand, Dennis, Strand, Susanne, Heilmann-Heimbach, Stefanie, Gomez-Quiroz, Luis E., Wörns, Marcus A., Galle, Peter R., Marquardt, Jens U.
المصدر: PLoS ONE; 12/21/2018, Vol. 13 Issue 12, p1-19, 19p
مصطلحات موضوعية: GENE expression, GINKGO, ONCOGENIC proteins, APOPTOSIS, OXIDATIVE stress
مستخلص: Ginkgo biloba (EGb761) is a widely used botanical drug. Several reports indicate that EGb761 confers preventive as well as anti-tumorigenic properties in a variety of tumors, including hepatocellular carcinoma (HCC). We here evaluate functional effects and molecular alterations induced by EGb761 in hepatoma cells and non-malignant hepatocytes. Hepatoma cell lines, primary human HCC cells and immortalized human hepatocytes (IH) were exposed to various concentrations (0–1000 μg/ml) of EGb761. Apoptosis and proliferation were evaluated after 72h of EGb761 exposure. Response to oxidative stress, tumorigenic properties and molecular changes were further investigated. While anti-oxidant effects were detected in all cell lines, EGb761 promoted anti-proliferative and pro-apoptotic effects mainly in hepatoma cells. Consistently, EGb761 treatment caused a significant reduction in colony and sphere forming ability in hepatoma cells and no mentionable changes in IH. Transcriptomic changes involved oxidative stress response as well as key oncogenic pathways resembling Nrf2- and mTOR signaling pathway. Taken together, EGb761 induces differential effects in non-transformed and cancer cells. While treatment confers protective effects in non-malignant cells, EGb761 significantly impairs tumorigenic properties in cancer cells by affecting key oncogenic pathways. Results provide the rational for clinical testing of EGb761 in preventive and therapeutic strategies in human liver diseases. [ABSTRACT FROM AUTHOR]
Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:19326203
DOI:10.1371/journal.pone.0209067