Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes

التفاصيل البيبلوغرافية
العنوان: Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes
المؤلفون: M. M. Conde, Pietro Pugliese, Paola Gallo, Mauro Rovere
المساهمون: Pugliese, Pietro, Conde, M. M., Rovere, M., Gallo, P.
سنة النشر: 2017
مصطلحات موضوعية: Materials Chemistry2506 Metals and Alloys, Nanotube, Materials science, Proton, Surfaces, Coatings and Film, Nanotechnology, 02 engineering and technology, Carbon nanotube, 010402 general chemistry, 021001 nanoscience & nanotechnology, 01 natural sciences, 0104 chemical sciences, Surfaces, Coatings and Films, law.invention, Molecular dynamics, law, Chemical physics, Phase (matter), Materials Chemistry, Water model, Isobar, Physical and Theoretical Chemistry, 0210 nano-technology, Physics::Atmospheric and Oceanic Physics, Ambient pressure
الوصف: A very recent experimental paper importantly and unexpectedly showed that water in carbon nanotubes is already in the solid ordered phase at the temperature where bulk water boils. The water models used so far in literature for molecular dynamics simulations in carbon nanotubes show freezing temperatures lower than the experiments. We present here results from molecular dynamics simulations of water inside single walled carbon nanotubes using an extremely realistic model for both liquid and icy water, the TIP4P/ICE. The water behavior inside nanotubes of different diameters has been studied upon cooling along the isobars at ambient pressure starting from temperatures where water is in a liquid state. We studied the liquid/solid transition, and we observed freezing temperatures higher than in bulk water and that depend on the diameter of the nanotube. The maximum freezing temperature found is 390 K, which is in remarkable agreement with the recent experimental measurements. We have also analyzed the ice structure called "ice nanotube" that water forms inside the single walled carbon nanotubes when it freezes. The ice forms observed are in agreement with previous results obtained with different water models. A novel finding, a partial proton ordering, is evidenced in our ice nanotubes at finite temperature.
اللغة: English
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5a8b68b0d46c6d1af4f91bd1ef72860Test
https://hdl.handle.net/11590/328541Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....e5a8b68b0d46c6d1af4f91bd1ef72860
قاعدة البيانات: OpenAIRE