يعرض 1 - 10 نتائج من 77 نتيجة بحث عن '"Chiasera A."', وقت الاستعلام: 0.85s تنقيح النتائج
  1. 1

    المصدر: SPIE Photonics West, SPIE OPTO 11276-Optical Components and Materials XVII, San Francisco, California, United States, 1-6/02/2020
    info:cnr-pdr/source/autori:Mario Christian Falconi; Dario Laneve; Lam Thi Ngoc Tran; Lidia Zur; Alessandro Chiasera; Pawel Gluchowski; Anna Lukowiak; Maurizio Ferrari; Francesco Prudenzano/congresso_nome:SPIE Photonics West, SPIE OPTO 11276-Optical Components and Materials XVII/congresso_luogo:San Francisco, California, United States/congresso_data:1-6%2F02%2F2020/anno:2020/pagina_da:/pagina_a:/intervallo_pagine

    الوصف: The theoretical model of rare earth doped optical devices based on the rate equations and the power propagation equations can be employed for recovering, via an indirect approach, the rare earth spectroscopic parameters. As an example, the model for an erbium doped silica-tin dioxide, SiO2 - SnO2 : Er3+, glass ceramic waveguide is considered. Two different pumping schemes are employed to excite the erbium ions, the direct pumping at 378 nm and the indirect pumping at 307 nm via the tin dioxide. The achievable optical gain per unit length at 1533 nm is then evaluated for both pumping cases. The ratio between the two simulated optical gains is compared with the emission intensity measurements to estimate the value of the SnO2-Er3+ energy transfer coefficient. The particle swarm optimization algorithm is applied in order to find the SiO2 - SnO2 : Er3+ glass ceramic spectroscopic parameters which properly match the simulated optical gains ratio with the experimentally measured emission ratios. In the same way, the pump power coupled in the glass ceramic waveguide is also recovered. The SnO2-Er3+ energy transfer coefficient is estimated to be about 6.1 × 10-22 m3/s.

  2. 2

    المصدر: Journal of Materials Chemistry C

    الوصف: Achieving an active manipulation of colours has huge implications in optoelectronics, as colour engineering can be exploited in a number of applications, ranging from display to lightning. In the last decade, the synergy of the highly pure colours of 1D photonic crystals, also known as Bragg stacks, with electro-tunable materials have been proposed as an interesting route to attain such a technologically relevant effect. However, recent works rely on the use of liquid electrolytes, which can pose issues in terms of chemical and environmental stability. Here, we report on the proof-of-concept of an electrolyte free and solution-processed electro-responsive Bragg stack. We integrate an electro-responsive plasmonic metal oxide, namely indium tin oxide, in a 1D photonic crystal structure made of alternating layers of ITO and TiO2 nanoparticles. In such a device, we observed a maximum of 23 nm blue-shift upon the application of an external bias (10 V). Our data suggest that electrochromism can be attained in all-solid state systems by combining a judicious selection of the constituent materials with device architecture optimisation.

  3. 3

    المساهمون: Departamento de Física Aplicada I, Escuela Superior de Ingenieros de Bilbao, Caratterizzazione e Sviluppo di Materiali per la Fotonica e l'Optoelecttronica (CSMFO), CNR Istituto di Fotonica e Nanotecnologie [Trento] (IFN), Consiglio Nazionale delle Ricerche [Roma] (CNR)-Consiglio Nazionale delle Ricerche [Roma] (CNR), Institute of Low Temperatures and Structure Research, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Politecnico di Bari, Università degli Studi di Trento (UNITN), Centro Studi e Ricerche 'Enrico Fermi' (Centro Fermi), Centro Studi e Ricerche e Museo Storico Della Fisica, Department of civil, environmental and mechanical engineering [Trento], University of Trento [Trento], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Istituto di Fisica Applicata 'Nello Carrara' (IFAC), Consiglio Nazionale delle Ricerche [Roma] (CNR), Institut de Physique de Nice (INPHYNI), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Institut des Molécules et Matériaux du Mans (IMMM), Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Istituto di Fotonica e Nanotecnologie (IFN), Enrico Fermi Center for Study and Research | Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi

    المصدر: 2019 21st International Conference on Transparent Optical Networks (ICTON)
    2019 21st International Conference on Transparent Optical Networks (ICTON), Jul 2019, Angers, France. pp.1-6, ⟨10.1109/ICTON.2019.8840012⟩
    ICTON
    2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, France, 9-13/07/2019
    info:cnr-pdr/source/autori:L. T. N. Tran, D. Massella, R. Balda, S. Berneschi, W. Blanc, B. Boulard, A. Chiappini, A. Chiasera, P. Dentella, S. Eaton, J. Fernandez, M. Ferrari, J. Gates, P. Gluchowski, G. Ischia, A. Lukowiak, G. N. Conti, F. Prudenzano, B. Rossi, G. C. Righini, D. Zonta, L. Zur/congresso_nome:2019 21st International Conference on Transparent Optical Networks (ICTON)/congresso_luogo:Angers, France, France/congresso_data:9-13%2F07%2F2019/anno:2019/pagina_da:/pagina_a:/intervallo_pagine
    Digital.CSIC. Repositorio Institucional del CSIC
    instname

    الوصف: Trabajo presentado en la 21st International Conference on Transparent Optical Networks (ICTON), celebrada en Angers (Francia), del 9 al 13 de julio de 2019
    Since the pioneering work of Tick, Borrelli, Cornelius, and Newhouse on transparent glass ceramics performed in 1995, the research regarding photonic glass-ceramics is growing fast. From the considerable number of published studies, covering a broad spectrum of applications, it appears that reliable fabrication techniques and realization of effective photonic devices are the two crucial pivots for an important advance in this glass photonics area. The important results already obtained in rare earth-activated oxyfluoride, fluoride, and silicate transparent glass ceramics are well known. Regarding silicate-based photonic glass-ceramics the binary system SiO 2 -SnO 2 is really appealing when we look at the two above mentioned objectives.In this communication, a brief review of the state of art, consolidated results and recent advances in erbium doped SnO 2 -SiO 2 transparent glass-ceramics, obtained by sol-gel technology will be presented, and short-term perspectives will be outlined.

  4. 4

    المساهمون: Università degli Studi di Trento (UNITN), Politecnico di Milano [Milan] (POLIMI), Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institute of Low Temperatures and Structure Research, Polska Akademia Nauk = Polish Academy of Sciences (PAN), CNR Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche [Roma] (CNR), Fondazione Bruno Kessler [Trento, Italy] (FBK), CNR Istituto di Fotonica e Nanotecnologie [Trento] (IFN), Enrico Fermi Center for Study and Research | Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rudjer Boskovic Institute [Zagreb], College of Engineering [Swansea], Swansea University, Department of Materials and Devices, Consiglio Nazionale delle Ricerche (CNR), Caratterizzazione e Sviluppo di Materiali per la Fotonica e l'Optoelecttronica (CSMFO), Consiglio Nazionale delle Ricerche [Roma] (CNR)-Consiglio Nazionale delle Ricerche [Roma] (CNR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), Institute of Low Temperature and Structure Research [Polish Academy of Sciences], National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)-National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Centro Studi e Ricerche 'Enrico Fermi' (Centro Fermi), Centro Studi e Ricerche e Museo Storico Della Fisica

    المصدر: Ceramics
    Ceramics, MDPI, 2019, 2 (1), pp.74-85. ⟨10.3390/ceramics2010007⟩
    Ceramics, 2019, 2 (1), pp.74-85. ⟨10.3390/ceramics2010007⟩
    Volume 2
    Issue 1
    Pages 7-85
    Ceramics Online 2 (2019): 74–85. doi:10.3390/ceramics2010007
    info:cnr-pdr/source/autori:Cesare Meroni, Francesco Scotognella, Yann Boucher, Anna Lukowiak, Davor Ristic, Giorgio Speranza, Stefano Varas, Lidia Zur, Mile Ivanda, Stefano Taccheo, Roberta Ramponi, Giancarlo C. Righini, Maurizio Ferrari and Alessandro Chiasera/titolo:Low-Threshold Coherent Emission at 1.5 µm from Fully Er3+ Doped Monolithic 1D Dielectric Microcavity Fabricated Using Radio Frequency Sputtering/doi:10.3390%2Fceramics2010007/rivista:Ceramics Online/anno:2019/pagina_da:74/pagina_a:85/intervallo_pagine:74–85/volume:2

    الوصف: Low threshold coherent emission at 1.5 µ
    m is achieved using Er3+-doped dielectric 1D microcavities fabricated with a Radio Frequency-sputtering technique. The microcavities are composed of a half-wavelength Er3+-doped SiO2 active layer inserted between two Bragg reflectors consisting of ten, five, and seven pairs of SiO2/TiO2 layers, also doped with Er3+ ions. The morphology of the structure is inspected using scanning electron microscopy. Transmission measurements show the third and first order cavity resonance at 530 nm and 1.5 µ
    m, respectively. The photoluminescence measurements are obtained using the optical excitation at the third order cavity resonance using a 514.5 nm Ar+ laser or Xe excitation lamp at 514.5 nm, with an excitation angle of 30°
    The full width at half maximum of the emission peak at 1535 nm decreased with the pump power until the spectral resolution of the detection system was 2.7 nm. Moreover, the emission intensity presents a non-linear behavior with the pump power and a threshold at about 4 µ
    W.

    وصف الملف: application/pdf

  5. 5

    المساهمون: Caratterizzazione e Sviluppo di Materiali per la Fotonica e l'Optoelecttronica (CSMFO), CNR Istituto di Fotonica e Nanotecnologie [Trento] (IFN), Consiglio Nazionale delle Ricerche [Roma] (CNR)-Consiglio Nazionale delle Ricerche [Roma] (CNR), Università degli Studi di Trento (UNITN), Politecnico di Milano [Milan] (POLIMI), Istituto Italiano di Tecnologia (IIT), Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Dipartimento di Fisica (Milano), Università degli Studi di Milano [Milano] (UNIMI), Institute of Low Temperatures and Structure Research, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Center of Excellence for Advanced Materials and Sensing Devices, Fondazione Bruno Kessler [Trento, Italy] (FBK), Institute for Integrative Nanosciences, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW Dresden), Leibniz Association-Leibniz Association, Enrico Fermi Center for Study and Research | Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Istituto di Fisica Applicata 'Nello Carrara' (IFAC), Consiglio Nazionale delle Ricerche [Roma] (CNR), College of Engineering [Swansea], Swansea University, Centro Studi e Ricerche 'Enrico Fermi' (Centro Fermi), Centro Studi e Ricerche e Museo Storico Della Fisica, National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)-National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Milano = University of Milan (UNIMI), Institute of Low Temperature and Structure Research [Polish Academy of Sciences], National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)

    المصدر: Optical Materials
    Optical Materials, Elsevier, 2019, 87, pp.107-111. ⟨10.1016/j.optmat.2018.04.057⟩
    Optical materials (Amst., Print) 87 (2019): 107–111. doi:10.1016/j.optmat.2018.04.057
    info:cnr-pdr/source/autori:A. Chiasera, C. Meroni, F. Scotognella, Y.G. Boucher, G. Galzerano, A. Lukowiak,D. Ristic, G. Speranza, S. Valligatla, S. Varas, L. Zur, M. Ivanda, G.C. Righinil,S. Taccheo, R. Ramponi, M. Ferrari/titolo:Coherent emission from fully Er3+ doped monolithic 1-D dielectric microcavity fabricated by rf-sputtering/doi:10.1016%2Fj.optmat.2018.04.057/rivista:Optical materials (Amst., Print)/anno:2019/pagina_da:107/pagina_a:111/intervallo_pagine:107–111/volume:87
    Optical Materials, 2019, 87, pp.107-111. ⟨10.1016/j.optmat.2018.04.057⟩

    الوصف: International audience; All Er3+ doped dielectric 1-D microcavity was fabricated by rf sputtering technique. The microcavity was constituted by half wave Er3+ doped SiO2 active layer inserted between two Bragg reflectors consists of ten pairs of SiO2/TiO2 layers also doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements confirm the third and first order cavity resonance at 530 nm and 1560 nm, respectively. The photoluminescence measurements were obtained by optically exciting at the third order cavity resonance using 514.5 nm Ar+ laser with an excitation angle of 30°. The Full Width at Half Maximum of the emission peak at 1560 nm decrease with the pump power until the spectral resolution of the detection system of ∼1.0 nm. Moreover, the emission intensity presents a non-linear behavior with the pump power and a threshold at about 24 mW was observed with saturation of the signal at above 185 mW of pump power.

  6. 6

    المصدر: Applied Sciences, Vol 8, Iss 8, p 1335 (2018)
    Applied sciences 8 (2018): 1335-1–1335-8. doi:10.3390/app8081335
    info:cnr-pdr/source/autori:Lam Thi Ngoc Tran, Damiano Massella, Lidia Zur, Alessandro Chiasera, Stefano Varas, Cristina Armellini, Giancarlo C. Righini, Anna Lukowiak, Daniele Zonta and Maurizio Ferrari/titolo:SiO2-SnO2:Er3+ Glass-Ceramic Monoliths/doi:10.3390%2Fapp8081335/rivista:Applied sciences/anno:2018/pagina_da:1335-1/pagina_a:1335-8/intervallo_pagine:1335-1–1335-8/volume:8
    Applied Sciences
    Volume 8
    Issue 8

    الوصف: The development of efficient luminescent systems, such as microcavities, solid-state lasers, integrated optical amplifiers, and optical sensors is the main topic in glass photonics. The building blocks of these systems are glass-ceramics activated by rare-earth ions because they exhibit specific morphologic, structural, and spectroscopic properties. Among various materials that could be used as nanocrystals to be imbedded in a silica matrix, tin dioxide presents some interesting peculiarities, e.g., the presence of tin dioxide nanocrystals allows an increase in both solubility and emission of rare-earth ions. Here, we focus our attention on Er3+&mdash
    doped silica&mdash
    tin dioxide photonic glass-ceramics fabricated by a sol-gel route. Although the SiO2-SnO2:Er3+ could be fabricated in different forms, such as thin films, monoliths, and planar waveguides, we herein limit ourselves to the monoliths. The effective role of tin dioxide as a luminescence sensitizer for Er3+ ions is confirmed by spectroscopic measurements and detailed fabrication protocols are discussed.

    وصف الملف: application/pdf

  7. 7

    المصدر: Ceramics international 41 (2015): 8655–8659. doi:10.1016/j.ceramint.2015.03.077
    info:cnr-pdr/source/autori:Scotognella, Francesco; Chiasera, Alessandro; Criante, Luigino; Aluicio-Sarduy, Eduardo; Varas, Stefano; Pelli, Stefano; Lukowiak, Anna; Righini, Giancarlo C.; Ramponi, Roberta; Ferrari, Maurizio/titolo:Metal oxide one dimensional photonic crystals made by RF sputtering and spin coating/doi:10.1016%2Fj.ceramint.2015.03.077/rivista:Ceramics international/anno:2015/pagina_da:8655/pagina_a:8659/intervallo_pagine:8655–8659/volume:41

    الوصف: We report here the analysis of the light transmission properties of one dimensional photonic crystals made by multilayers of silicon dioxide and titanium dioxide. A precise fabrication by radiofrequency sputtering of a photonic crystal allows us to accurately model the transmission spectrum of the crystal, by taking into account the wavelength dependent refractive indexes of the materials. We found that, while the dispersion of silicon dioxide is in good agreement with data reported in literature, the dispersion of titanium dioxide is more critical. Using such dispersions we could fit the transmission spectra of silicon dioxide/titanium dioxide one dimensional photonic crystals made by spin coating layer deposition starting from nanoparticle colloidal dispersions. The fit takes into account the porosity of the layers and the losses due to Rayleigh scattering.

  8. 8

    المساهمون: Caratterizzazione e Sviluppo di Materiali per la Fotonica e l'Optoelecttronica (CSMFO), CNR Istituto di Fotonica e Nanotecnologie [Trento] (IFN), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)-National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Politecnico di Milano [Milan] (POLIMI), Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), Polish Academy of Sciences (PAN), Rudjer Boskovic Institute [Zagreb], Fondazione Bruno Kessler [Trento, Italy] (FBK), Università degli Studi di Trento (UNITN), Enrico Fermi Center for Study and Research | Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, College of Engineering [Swansea], Swansea University, National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Consiglio Nazionale delle Ricerche [Roma] (CNR)-Consiglio Nazionale delle Ricerche [Roma] (CNR), École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Consiglio Nazionale delle Ricerche [Roma] (CNR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Centro Studi e Ricerche 'Enrico Fermi' (Centro Fermi), Centro Studi e Ricerche e Museo Storico Della Fisica

    المصدر: Proc. SPIE
    SPIE Photonics Europe 2018
    SPIE Photonics Europe 2018, Apr 2018, Strasbourg, France. pp.106830Q, ⟨10.1117/12.2306413⟩
    Proceedings of SPIE 10683 (2018): 1–12. doi:10.1117/12.2306413
    info:cnr-pdr/source/autori:Alessandro Chiasera, Francesco Scotognella, Yann Boucher, Anna Lukowiak, Davor Ristic, Giorgio Speranza, Cesare Meroni, Stefano Varas, Lidia Zur, Mile Ivanda, Stefano Taccheo, Roberta Ramponi, Giancarlo C. Righini, Maurizio Ferrari/titolo:Fabrication by rf-sputtering and assessment of dielectric Er3+ doped monolithic 1-D microcavity for coherent emission at 1.5 ?m/doi:10.1117%2F12.2306413/rivista:Proceedings of SPIE/anno:2018/pagina_da:1/pagina_a:12/intervallo_pagine:1–12/volume:10683

    الوصف: International audience; All Er3+ doped dielectric 1-D microcavity are fabricated by RF sputtering technique. The microcavity is composed of half wave Er3+ doped SiO2 active layer inserted, between two Bragg reflectors consisting of seven pairs of SiO2/TiO2 layers also doped with Er3+ ions. The morphology of the structure is inspected with scanning electron microscopy. Transmission measurements show the third and first order cavity resonance at 530 nm and 1535 nm, respectively. The photoluminescence measurements were obtained by optically exciting at the third order cavity resonance using 514.5 nm Ar+ laser with an excitation angle of 30°. The Full Width at Half Maximum of the emission peak at 1535 nm decrease with the pump power until the spectral resolution of the detection system of 2.3 nm. Moreover, the emission intensity presents a non-linear behavior with the pump power and a threshold at about 4 μW.

  9. 9

    المساهمون: CNR Istituto di Fotonica e Nanotecnologie [Trento] (IFN), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Enrico Fermi Center for Study and Research | Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Università degli Studi di Trento (UNITN), Nicolaus Copernicus University [Toruń], Università degli Studi di Padova = University of Padua (Unipd), University of Sciences [Ho Chi Minh City] (HCMC), Ho Chi Minh City University of Science (HCMUS), Institute of Low Temperature and Structure Research [Polish Academy of Sciences], Polska Akademia Nauk = Polish Academy of Sciences (PAN), College of Engineering [Swansea], Swansea University, AGH University of Science and Technology [Krakow, PL] (AGH UST), Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), Consiglio Nazionale delle Ricerche [Roma] (CNR), Centro Studi e Ricerche 'Enrico Fermi' (Centro Fermi), Centro Studi e Ricerche e Museo Storico Della Fisica, Universita degli Studi di Padova, Institute of Low Temperature and Structure Research Polish Academy of Sciences, Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)

    المصدر: Proceedings of SPIE 10683 (2018): 1–12. doi:10.1117/12.2306767
    info:cnr-pdr/source/autori:L. T. N. Tran; L. Zur; D. Massella; B. Derkowska-Zielinska; A. Chiasera ; S. Varas; C. Armellini; A. Martucci; D. Zonta; T. T. V. Tran; A. Lukowiak; S. Taccheo; D. Dorosz; G. C. Righini; Y. G. Boucher; M. Ferrari/titolo:SiO2-SnO2:Er3+ transparent glass-ceramics: fabrication and photonic assessment/doi:10.1117%2F12.2306767/rivista:Proceedings of SPIE/anno:2018/pagina_da:1/pagina_a:12/intervallo_pagine:1–12/volume:10683
    Proc. SPIE
    SPIE Photonics Europe 2018
    SPIE Photonics Europe 2018, Apr 2018, Strasbourg, France. pp.106832C, ⟨10.1117/12.2306767⟩

    الوصف: International audience; This work focuses on the fabrication processes and photonic assessment of SiO2-SnO2:Er3+ monoliths. To obtain the crack-free and densified system, the sol-gel derived synthesis protocols and heat-treatment processes were optimized. The absorption measurements were employed to assess the effect of the heat-treatment on the samples and specially to estimate the –OH content. The XRD patterns were used to investigate the crystallization as well as the structure of the monoliths. The emission spectra, performed at different excitation wavelengths, evidence the presence of Er3+ in the SnO2 nanocrystals and the energy transfer from SnO2 to the rare earth ions. In addition, the efficient role of SnO2 nanocrystals as Er3+ sensitizers are also experimentally confirmed in this system.

  10. 10

    المساهمون: College of Engineering [Swansea], Swansea University, Caratterizzazione e Sviluppo di Materiali per la Fotonica e l'Optoelecttronica (CSMFO), CNR Istituto di Fotonica e Nanotecnologie [Trento] (IFN), Consiglio Nazionale delle Ricerche [Roma] (CNR)-Consiglio Nazionale delle Ricerche [Roma] (CNR), Institut de Physique de Nice (INPHYNI), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Rudjer Boskovic Institute [Zagreb], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Institute of Low Temperatures and Structure Research, Polska Akademia Nauk = Polish Academy of Sciences (PAN)

    المصدر: Fiber Lasers and Glass Photonics: Materials through Applications
    Fiber Lasers and Glass Photonics: Materials through Applications, Apr 2018, Strasbourg, France. pp.88, ⟨10.1117/12.2306082⟩

    الوصف: In this paper, we numerically investigate the effect of the reverse cross-relaxation process on the inversion population of laser levels in Tm- doped glass based active system. We show the impact may be significant when high inversion population is required.