دورية أكاديمية

Phase-Approaching Stimulation Sequence for SSVEP-Based BCI: A Practical Use in VR/AR HMD.

التفاصيل البيبلوغرافية
العنوان: Phase-Approaching Stimulation Sequence for SSVEP-Based BCI: A Practical Use in VR/AR HMD.
المؤلفون: Hsu, Hao-Teng, Shyu, Kuo-Kai, Hsu, Chuan-Chih, Lee, Lung-Hao, Lee, Po-Lei
المصدر: IEEE Transactions on Neural Systems & Rehabilitation Engineering; 2021, Vol. 30, p2754-2764, 11p
مصطلحات موضوعية: VISUAL evoked potentials, HEAD-mounted displays, BRAIN-computer interfaces, FIXED interest rates, KNOWLEDGE transfer, COMPUTER interfaces
مستخلص: Steady-state visual evoked potential (SSVEP) has been used to implement brain-computer interface (BCI) due to its advantages of high information transfer rate (ITR) and high accuracy. In recent years, owing to the developments of head-mounted device (HMD), the HMD has become a popular device to implement SSVEP–based BCI. However, an HMD with fixed frame rate only can flash at its subharmonic frequencies which limits the available number of stimulation frequencies for SSVEP-based BCI. In order to increase the number of available commands for SSVEP-based BCI, we proposed a phase-approaching (PA) method to generate visual stimulation sequences at user-specified frequency on an HMD. The flickering sequence generated by our PA method (PAS sequence) tries to approximate user-specified stimulation frequency by means of minimizing the difference of accumulated phases between our PAS sequence and the ideal wave of user-specified frequency. The generated sequence of PA method determines the brightness state for each frame to approach the accumulated phase of the ideal wave. The SSVEPs evoked from stimulators, driven by PAS sequences, were analyzed using canonical correlation analysis (CCA) to identify user’s gazed target. In this study, a six-command SSVEP-based BCI was designed to operate a flying drone. The ITR and detection accuracy are 36.84 bits/min and 93.30%, respectively. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Neural Systems & Rehabilitation Engineering is the property of IEEE and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:15344320
DOI:10.1109/TNSRE.2021.3131779