دورية أكاديمية

Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U.

التفاصيل البيبلوغرافية
العنوان: Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U.
المؤلفون: van Eden, G. G., Reinke, M. L., Peterson, B. J., Gray, T. K., Delgado-Aparicio, L. F., Jaworski, M. A., Lore, J., Mukai, K., Sano, R., Pandya, S. N., Morgan, T. W.
المصدر: Review of Scientific Instruments; Nov2016, Vol. 87 Issue 11, p11D402-1-11D402-4, 4p, 1 Diagram, 1 Chart, 2 Graphs
مصطلحات موضوعية: PROTOTYPES, DIVERTERS (Electronics), BOLOMETERS, INFRARED detectors, INDUCTIVELY coupled plasma atomic emission spectrometry, THERMAL properties
مستخلص: The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm2 Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil's calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs. [ABSTRACT FROM AUTHOR]
Copyright of Review of Scientific Instruments is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00346748
DOI:10.1063/1.4955487