دورية أكاديمية

How Do Radionuclides Accumulate in Marine Organisms? A Case Study of Europium with Aplysina cavernicola.

التفاصيل البيبلوغرافية
العنوان: How Do Radionuclides Accumulate in Marine Organisms? A Case Study of Europium with Aplysina cavernicola.
المؤلفون: Maloubier, Melody1,2, Shuh, David K.3, Minasian, Stefan G.3, Pacold, Joseph I.3, Solari, Pier-Lorenzo4, Michel, Hervé1, Oberhaensli, François R.5, Bottein, Yasmine5, Monfort, Marguerite2, Moulin, Christophe2 christophe.moulin@cea.fr, Den Auwer, Christophe1 christophe.denauwer@unice.fr
المصدر: Environmental Science & Technology. 10/4/2016, Vol. 50 Issue 19, p10730-10738. 9p.
مصطلحات موضوعية: RADIOISOTOPES, MARINE microbiology, EUROPIUM, BIOSPHERE, TRANSMISSION electron microscopy
مستخلص: In the ocean, complex interactions between natural and anthropogenic radionuclides, seawater, and diverse marine biota provide a unique window through which to examine ecosystem and trophic transfer mechanisms in cases of accidental dissemination. The nature of interaction between radionuclides, the marine environment, and marine species is therefore essential for better understanding transfer mechanisms from the hydrosphere to the biosphere. Although data pertaining to the rate of global transfer are often available, little is known regarding the mechanism of environmental transport and uptake of heavy radionuclides by marine species. Among marine species, sponges are immobile active filter feeders and have been identified as hyperaccumulators of several heavy metals. We have selected the Mediterranean sponge Aplysina cavernicola as a model species for this study. Actinide elements are not the only source of radioactive release in cases of civilian nuclear events; however, their physicochemical transfer mechanisms to marine species remain largely unknown. We have targeted europium(III) as a representative of the trivalent actinides such as americium or curium. To unravel biological uptake mechanisms of europium in A. cavernicola, we have combined radiometric (γ) measurements with spectroscopic (time-resolved laser-induced fluorescence spectroscopy, TRLIFS, and X-ray absorption near-edge structure, XANES) and imaging (transmission electron microscopy, TEM, and scanning transmission X-ray microscopy, STXM) techniques. We have observed that the colloids of NaEu(CO3)2·nH2O formed in seawater are taken up by A. cavernicola with no evidence that lethal dose has been reached in our working conditions. Spectroscopic results suggest that there is no change of speciation during uptake. Finally, TEM and STXM images recorded at different locations across a sponge cross section, together with differential cell separation, indicate the presence of europium particles (around 200 nm) mainly located in the skeleton and toward the outer surface of the sponge. [ABSTRACT FROM AUTHOR]
Copyright of Environmental Science & Technology is the property of American Chemical Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Business Source Index
الوصف
تدمد:0013936X
DOI:10.1021/acs.est.6b01896