يعرض 1 - 10 نتائج من 165 نتيجة بحث عن '"Pirfenidone"', وقت الاستعلام: 1.03s تنقيح النتائج
  1. 1
    دورية أكاديمية

    جغرافية الموضوع: England

    الوصف: Transverse (t)-tubule remodelling is a prominent feature of heart failure with reduced ejection fraction (HFrEF). In our previous research, we identified an increased amount of collagen within the t-tubules of HFrEF patients, suggesting fibrosis could contribute to the remodelling of t-tubules. In this research, we tested this hypothesis in a rodent model of myocardial infarction induced heart failure that was treated with the anti-fibrotic pirfenidone. Confocal microscopy demonstrated loss of t-tubules within the border zone region of the infarct. This was documented as a reduction in t-tubule frequency, area, length, and transverse elements. Eight weeks of pirfenidone treatment was able to significantly increase the area and length of the t-tubules within the border zone. Echocardiography showed no improvement with pirfenidone treatment. Surprisingly, pirfenidone significantly increased the thickness of the t-tubules in the remote left ventricle of heart failure animals. Dilation of t-tubules is a common feature in heart failure suggesting this may negatively impact function but there was no functional loss associated with pirfenidone treatment. However, due to the relatively short duration of treatment compared to that used clinically, the impact of long-term treatment on t-tubule structure should be investigated in future studies.

    وصف الملف: Electronic-eCollection; application/pdf

    العلاقة: Interface focus; (2023). Interface Focus, 13(6), 20230047-.; https://hdl.handle.net/2292/67604Test; 38106917 (pubmed); rsfs20230047

  2. 2

    المصدر: Pharmacological Reports

    الوصف: Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes pulmonary injury or multiple-organ injury by various pathological pathways. Transforming growth factor-beta (TGF-β) is a key factor that is released during SARS-CoV-2 infection. TGF-β, by internalization of the epithelial sodium channel (ENaC), suppresses the anti-oxidant system, downregulates the cystic fibrosis transmembrane conductance regulator (CFTR), and activates the plasminogen activator inhibitor 1 (PAI-1) and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kB). These changes cause inflammation and lung injury along with coagulopathy. Moreover, reactive oxygen species play a significant role in lung injury, which levels up during SARS-CoV-2 infection. Drug Suggestion Pirfenidone is an anti-fibrotic drug with an anti-oxidant activity that can prevent lung injury during SARS-CoV-2 infection by blocking the maturation process of transforming growth factor-beta (TGF-β) and enhancing the protective role of peroxisome proliferator-activated receptors (PPARs). Pirfenidone is a safe drug for patients with hypertension or diabetes and its side effect tolerated well. Conclusion The drug as a theoretical perspective may be an effective and safe choice for suppressing the inflammatory response during COVID-19. The recommendation would be a combination of pirfenidone and N-acetylcysteine to achieve maximum benefit during SARS-CoV-2 treatment.

  3. 3

    المصدر: Scientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
    Scientific Reports

    الوصف: miRNAs are involved in the development of metabolic associated fatty liver disease (MAFLD) and nonalcoholic steatohepatitis (NASH). We aimed to evaluate modifications by prolonged-release pirfenidone (PR-PFD) on key hepatic miRNAs expression in a MAFLD/NASH model. First, male C57BL/6J mice were randomly assigned into groups and fed with conventional diet (CVD) or high fat and carbohydrate diet (HFD) for 16 weeks. At the end of the eighth week, HFD mice were divided in two and only one half was treated with 300 mg/kg/day of PR-PFD mixed with food. Hepatic expression of miRNAs and target genes that participate in inflammation and lipid metabolism was determined by qRT-PCR and transcriptome by microarrays. Increased hepatic expression of miR-21a-5p, miR-34a-5p, miR-122-5p and miR-103-3p in MAFLD/NASH animals was reduced with PR-PFD. Transcriptome analysis showed that 52 genes involved in lipid and collagen biosynthesis and inflammatory response were downregulated in PR-PFD group. The expression of Il1b, Tnfa, Il6, Tgfb1, Col1a1, and Srebf1 were decreased in PR-PFD treated animals. MAFLD/NASH animals compared to CVD group showed modifications in gene metabolic pathways implicated in lipid metabolic process, inflammatory response and insulin resistance; PR-PFD reversed these modifications.

  4. 4

    المصدر: Clinical Pharmacology in Drug Development

    الوصف: GLPG1205 is a novel agent being investigated for the treatment of idiopathic pulmonary fibrosis. GLPG1205 may be concomitantly administered with pirfenidone in future clinical development; therefore, the potential for GLPG1205 to interact with enzymes involved in the metabolism of pirfenidone (cytochrome P450 [CYP] 1A2, CYP2C9, 2C19) was evaluated. In vitro experiments indicated weak inhibition of CYP1A2 and moderate but reversible inhibition of CYP2C9 and CYP2C19 by GLPG1205. A phase 1 randomized, double‐blind crossover study in 14 healthy males (NCT02623296) evaluated the effect of GLPG1205 100 mg or placebo (once daily for 12 days) on the single‐dose pharmacokinetics of a cocktail of CYP1A2, CYP2C9, and CYP2C19 substrates (coadministered on day 13). GLPG1205 had no effect on the exposure of CYP2C9 and CYP1A2 substrates or metabolites; however, a trend toward increased omeprazole (CYP2C19 substrate) exposure was observed. Although considered not clinically relevant, GLPG1205 increased the elimination rate of 5‐hydroxyomeprazole (CYP2C19 metabolite) 1.16‐fold versus placebo. GLPG1205 had no effect on the elimination of all other substrates or metabolites. GLPG1205 had a favorable safety and tolerability profile. In conclusion, GLPG1205 100 mg once daily does not interact with CYP2C9, CYP2C19, or CYP1A2 to a clinically relevant extent and may be administered concomitantly with drugs metabolized by these enzymes.

  5. 5

    المصدر: Hepatology Communications, Vol 4, Iss 3, Pp 434-449 (2020)
    Hepatology Communications

    الوصف: Nonalcoholic steatohepatitis (NASH) is recognized by hepatic lipid accumulation, inflammation, and fibrosis. No studies have evaluated the prolonged‐release pirfenidone (PR‐PFD) properties on NASH features. The aim of this study is to evaluate how PR‐PFD performs on metabolic functions, and provide insight on a mouse model of human NASH. Male C57BL/6J mice were fed with either normo diet or high‐fat/carbohydrate diet for 16 weeks and a subgroup also fed with PR‐PFD (300 mg/kg/day). An insulin tolerance test was performed at the end of treatment. Histological analysis, determination of serum hormones, adipocytokines measurement, and evaluation of proteins by western blot was performed. Molecular docking, in silico site‐directed mutagenesis, and in vitro experiments using HepG2 cultured cells were performed to validate PR‐PFD binding to peroxisome proliferator–activated receptor alpha (PPAR‐α), activation of PPAR‐α promoter, and sirtuin 1 (SIRT1) protein expression. Compared with the high‐fat group, the PR‐PFD‐treated mice displayed less weight gain, cholesterol, very low density lipoprotein and triglycerides, and showed a significant reduction of hepatic macrosteatosis, inflammation, hepatocyte ballooning, fibrosis, epididymal fat, and total adiposity. PR‐PFD restored levels of insulin, glucagon, adiponectin, and resistin along with improved insulin resistance. Noteworthy, SIRT1–liver kinase B1–phospho‐5′ adenosine monophosphate–activated protein kinase signaling and the PPAR‐α/carnitine O‐palmitoyltransferase 1/acyl‐CoA oxidase 1 pathway were clearly induced in high fat + PR‐PFD mice. In HepG2 cells incubated with palmitate, PR‐PFD induced activation and nuclear translocation of both PPARα and SIRT1, which correlated with increased SIRT1 phosphorylated in serine 47, suggesting a positive feedback loop between the two proteins. These results were confirmed with both synthetic PPAR‐α and SIRT1 activators and inhibitors. Finally, we found that PR‐PFD is a true agonist/ligand for PPAR‐α. Conclusions: PR‐PFD provided an anti‐steatogenic effect and protection for inflammation and fibrosis.
    Pirfenidone is an agonist/ligand for PPAR‐α and improves inflammation, fibrosis, insulin sensitivity, and fat metabolism in a mouse model of human NASH through the SIRT1‐LKB1‐pAMPK noncanonical pathway.

  6. 6

    المؤلفون: Adrienne R. Wells, Kai P. Leung

    المصدر: Biochemical and Biophysical Research Communications. 521:646-651

    الوصف: Dysregulated wound healing after burn injury frequently results in debilitating hypertrophic scarring and contractures. Myofibroblasts, the main effector cells for dermal fibrosis, develop from normal fibroblasts via transforming growth factor beta 1 (TGF-β1). During wound healing, myofibroblasts produce extracellular matrix (ECM) proteins, modulate ECM stability, and contract the ECM using alpha smooth muscle actin (α-SMA) in contractile stress fibers. The antifibrotic pirfenidone has previously been shown to inhibit the initial differentiation of fibroblasts into myofibroblasts in vitro and act as a prophylactic measure against hypertrophic scar development in a mouse burn model. To test whether pirfenidone affects differentiated myofibroblasts, we investigated the in vitro effects of pirfenidone treatment after three to five days of stimulation with TGF-β1. In assays for morphology, protein and gene expression, and contractility, pirfenidone treatment produced significant effects. Profibrotic gene expression returned to near-normal levels, further α-SMA protein expression was prevented, and cell contraction within a stressed collagen matrix was reduced. These in vitro results promote pirfenidone as a promising antifibrotic agent to treat existing scars and healing wounds by mitigating the effects of differentiated myofibroblasts.

  7. 7

    المصدر: Pharmacological Reports. 71:774-781

    الوصف: Background Pirfenidone (PFD) is an orally active antifibrotic agent that has anti-inflammatory activity in diverse animal models. Its effect against acute pancreatitis (AP) has not been elucidated. Hence, the present investigation was carried out to assess the potential protective role of PFD against l -arginine-induced AP in mice. Methods AP was induced in adult male Swiss albino mice via intraperitoneal injections of l -arginine (4 g/kg, twice each 1 h apart). PFD (250 mg/kg, orally) was administered one day before and on the day of l -arginine challenge. Twenty-four hours after l -arginine injection, the severity of AP was evaluated using biochemical and histological analyses. Indices of oxidative stress, inflammation and apoptosis were evaluated using ELISA and immunohistochemistry (IHC). Results PFD suppressed the development of l -arginine-induced AP as revealed by the improvement of histopathological lesions of pancreatic specimen and the significant reduction of serum amylase and lipase levels. Notably, PFD reduced the lipid peroxidation and enhanced the antioxidants such as reduced glutathione (GSH) and superoxide dismutase (SOD) in pancreatic tissue. Importantly, PFD suppressed AP-associated elevation of inflammatory cytokines along with depression of nuclear factor kappa-B (NF-κB) immuno-expression in pancreatic tissue. Lastly, PFD efficiently ameliorated AP-induced elevation of the pro-apoptotic protein (Bax) and increased AP-induced reduction of the anti-apoptotic protein (Bcl2). Conclusions PFD protected against l -arginine-induced AP in mice through anti-oxidative, anti-inflammatory and anti-apoptotic properties.

  8. 8

    المصدر: Respiratory research, vol 22, iss 1
    Respiratory Research, Vol 22, Iss 1, Pp 1-14 (2021)

    الوصف: Rationale αv integrins, key regulators of transforming growth factor-β activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvβ6) and fibroblasts (αvβ1) in fibrotic lungs. Objectives We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. Methods Selective αvβ6 and αvβ1, dual αvβ6/αvβ1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-β cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-β signaling. Bleomycin-challenged mice treated with dual αvβ6/αvβ1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. Measurements and main results Inhibition of integrins αvβ6 and αvβ1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvβ6/αvβ1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. Conclusions In the fibrotic lung, dual inhibition of integrins αvβ6 and αvβ1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-β.

    وصف الملف: application/pdf

  9. 9

    المصدر: Cancers, Vol 13, Iss 5118, p 5118 (2021)
    Cancers
    Volume 13
    Issue 20

    الوصف: Simple Summary Cancer-associated fibroblasts (CAFs) stimulate phenotypic transformation and acquisition of stemness in carcinoma cells. Targeting CAF-derived cytokines may suppress initiation of these events. This study aimed to show the inhibitory effects of pirfenidone on phenotypic transformation and stemness of cancer cells. To this end, we leverage the use of a 3D microfluidic device to analyze carcinoma progression phenotypes. We found that pirfenidone decreased tumor spheroid formation and epithelial–mesenchymal transition (EMT) the inhibition of cytokine production by CAFs. In the microfluidic model, we demonstrate that pirfenidone significantly inhibits the migration of carcinoma cells and CAFs. This study highlights the potential application of pirfenidone in suppressing invasion and potentially metastasis in breast cancer which can be further investigated in vivo. Abstract The aim of this study was to assess the effects of pirfenidone (PFD) on promoting epithelial–mesenchymal-transition (EMT) and stemness features in breast carcinoma cells through targeting cancer-associated-fibroblasts (CAFs). Using The Cancer Genome Atlas (TCGA) database, we analyzed the association between stromal index, EMT, and stemness-related genes across 1084 breast cancer patients, identifying positive correlation between YAP1, EMT, and stemness genes in samples with a high-stromal index. We monitored carcinoma cell invasion and spheroid formation co-cultured with CAFs in a 3D microfluidic device, followed by exposing carcinoma cells, spheroids, and CAFs with PFD. We depicted a positive association between the high-stromal index and the expression of EMT and stemness genes. High YAP1 expression in samples correlated with more advanced EMT status and stromal index. Additionally, we found that CAFs promoted spheroid formation and induced the expression of YAP1, VIM, and CD44 in spheroids. Treatment with PFD reduced carcinoma cell migration and decreased the expression of these genes at the protein level. The cytokine profiling showed significant depletion of various EMT- and stemness-regulated cytokines, particularly IL8, CCL17, and TNF-beta. These data highlight the potential application of PFD on inhibiting EMT and stemness in carcinoma cells through the targeting of critical cytokines.

    وصف الملف: Electronic; application/pdf

  10. 10

    المصدر: Ther Adv Respir Dis
    Therapeutic Advances in Respiratory Disease, Vol 15 (2021)

    الوصف: Background: The antifibrotic drugs nintedanib and pirfenidone are used for the treatment of idiopathic pulmonary fibrosis (IPF). We analysed the association of common profibrotic polymorphisms in MUC5B (mucin 5B, rs35705950) and DSP (desmoplakin, rs2076295) on antifibrotic treatment outcomes in IPF. Methods: MUC5B rs35705950 and DSP rs2076295 were assessed in IPF patients ( n = 210, 139 men/71 women) from the Czech EMPIRE registry and age- or sex-matched healthy individuals ( n = 205, 125 men/80 women). Genetic data were collated with overall survival (OS), acute exacerbation episodes, worsening lung function and antifibrotic treatment. Results: We confirmed overexpression of the MUC5B rs35705950*T allele (55.2% versus 20.9%, p CO (diffuse lung capacity) at the IPF diagnosis were associated with survival. Conclusion: Our real-world study showed that IPF patients with MUC5B T* allele or DSP G* allele profit from antifibrotic treatment by lower mortability. Moreover, carriers of the DSP rs2076295*G allele benefit from treatment with nintedanib, and TT genotype from treatment with pirfenidone. MUC5B rs35705950 did not impact the outcome of treatment with either nintedanib or pirfenidone. Our single-registry pilot study should be confirmed with an independent patient cohort.