يعرض 1 - 10 نتائج من 24 نتيجة بحث عن '"remobilization"', وقت الاستعلام: 1.03s تنقيح النتائج
  1. 1

    المصدر: Journal of Experimental Botany

    الوصف: Senescence is a complex trait under genetic and environmental control, in which resources are remobilized from vegetative tissue into grain. Delayed senescence, or ‘staygreen’ traits, can confer stress tolerance, with extended photosynthetic activity hypothetically sustaining grain filling. The genetics of senescence regulation are largely unknown, with senescence variation often correlated with phenological traits. Here, we confirm staygreen phenotypes of two Triticum aestivum cv. Paragon ethyl methane sulfonate mutants previously identified during a forward genetic screen and selected for their agronomic performance, similar phenology, and differential senescence phenotypes. Grain filling experiments confirmed a positive relationship between onset of senescence and grain fill duration, reporting an associated ~14% increase in final dry grain weight for one mutant (P
    Two staygreen mutants were identified for which grain fill duration and grain weight were enhanced. Independent amino acid substitutions within NAC subdomain IV of NAM-1 homoeologues are proposed as causative.

  2. 2

    المساهمون: Ecophysiologie Végétale, Agronomie et Nutritions (EVA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Recherche Agronomique (INRA), Agroécologie [Dijon], Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC), AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National de la Recherche Agronomique (INRA)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, Institut de Recherche en Horticulture et Semences (IRHS), AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA)-Université d'Angers (UA), Pari Scientifique Département Environnement et Agronomie, Institut National de la Recherche Agronomique, Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-AGROCAMPUS OUEST, Université d'Angers (UA)-Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, AGROCAMPUS OUEST-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Recherche Agronomique (INRA), Ecophysiologie Végétale, Agronomie et Nutritions NCS (EVA), Normandie Université (NU)-Normandie Université (NU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Université de Rennes 1 (UR1), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)

    المصدر: Planta
    Planta, Springer Verlag, 2019, 250 (6), pp.2047-2062. ⟨10.1007/s00425-019-03284-2⟩
    Planta, 2019, 250 (6), pp.2047-2062. ⟨10.1007/s00425-019-03284-2⟩

    الوصف: International audience; Specific combinations of physiological and molecular parameters associated with N and S remobilization measured at the onset of flowering were predictive of final crop performances in oilseed rape. Oilseed rape (Brassica napus L.) is a high nitrogen (N) and sulphur (S) demanding crop. Nitrogen- and S-remobilization processes allow N and S requirements to reproductive organs to be satisfied when natural uptake is reduced, thus ensuring high yield and seed quality. The quantification of physiological and molecular indicators of early N and S remobilization could be used as management tools to correct N and S fertilization. However, the major limit of this corrective strategy is to ensure the correlation between final performances-related variables and early measured parameters. In our study, four genotypes of winter oilseed rape (OSR) were grown until seed maturity under four nutritional modalities combining high and/or low N and S supplies. Plant final performances, i.e., seed production, N- and S-harvest indexes, seed N and S use efficiencies, and early parameters related to N- or S-remobilization processes, i.e., photosynthetic leaf area, N and S leaf concentrations, leaf soluble protein and leaf sulphate concentrations, and leaf RuBisCO abundance at flowering, were measured. We demonstrated that contrasting final performances existed according to the N and S supplies. An optimal N:S ratio supply could explain the treatment-specific crop performances, thus justifying N and S concurrent managements. Specific combinations of early measured plant parameters could be used to predict final performances irrespective of the nutritional supply and the genotype. This work demonstrates the potential of physiological and molecular indicators measured at flowering to reflect the functioning of N- and S-compound remobilization and to predict yield and quality penalties. However, because the predictive models are N and S independent, instant N and S leaf analyses are required to further adjust the adequate fertilization. This study is a proof of a concept which opens prospects regarding instant diagnostic tools in the context of N and S mineral fertilization management.

  3. 3

    المصدر: Journal of Plant Physiology. 211:70-80

    الوصف: Subtilases are one of the largest groups of the serine protease family and are involved in many aspects of plant development including senescence. In wheat, previous reports demonstrate an active participation of two senescence-induced subtilases, denominated P1 and P2, in nitrogen remobilization during whole plant senescence. The aim of the present study was to examine the participation of subtilases in senescence-associated proteolysis of barley leaves while comparing different senescence types. With this purpose, subtilase enzymatic activity, immunodetection with a heterologous antiserum and gene expression of 11 subtilase sequences identified in barley databases by homology to P1 were analyzed in barley leaves undergoing dark-induced or natural senescence at the vegetative or reproductive growth phase. Results showed that subtilase specific activity as well as two inmunoreactive bands representing putative subtilases increased in barley leaves submitted to natural and dark-induced senescence. Gene expression analysis showed that two of the eleven subtilase genes analyzed, HvSBT3 and HvSBT6, were up-regulated in all the senescence conditions tested while HvSBT2 was expressed and up-regulated only during dark-induced senescence. On the other hand, HvSBT1, HvSBT4 and HvSBT7 were down-regulated during senescence and two other subtilase genes (HvSBT10 and HvSBT11) showed no significant changes. The remaining subtilase genes were not detected. Results demonstrate an active participation of subtilases in protein degradation during dark-induced and natural leaf senescence of barley plants both at the vegetative and reproductive stage, and, based on their expression profile, postulate HvSBT3 and HvSBT6 as key components of senescence-associated proteolysis. Fil: Roberts, Irma. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina Fil: Veliz, Cintia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina Fil: Criado, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina Fil: Signorini, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina Fil: Simonetti, Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina Fil: Caputo Suarez, Carla Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina

    وصف الملف: application/pdf

  4. 4

    المؤلفون: A. G. Khakimova, O. P. Mitrofanova

    المصدر: Vavilovskij Žurnal Genetiki i Selekcii, Vol 20, Iss 4, Pp 545-554 (2016)

    الوصف: The present review offers an overview of genetic research on grain protein content (GPC) in various Triticum L. and Aegilops L. species. Regularities in geographic variability of GPC and the results of a longterm screening of accessions from the VIR collection for this trait are considered. On the basis of these assessments, a core-collection of genetic sources with high GPC has been formed. It includes the diploid Aegilops species as donors of B, G and D genomes for allopolyploid wheats, as well as accessions of di-, tetra- and hexaploid wheat species. The use of highprotein sources in wheat breeding in the United States and Canada in the 1970’s–1980’s resulted in the bread wheat GPC increase by 0.5–3.0 %; however, further purposeful attempts at increasing GPC by traditional breeding methods failed. A breakthrough in increasing the total GPC has been achieved as a result of molecular genetics methods and molecular markers development. For the first time, a functional locus, or the Gpc-B1 gene (chromosome 6BS) affecting the accumulation of protein, Zn and Fe in grain, was identified in T. dicoccoides, cloned and studied in detail. The application of molecular markers has revealed the active allele of this gene in some landraces and old cul-tivars of T. dicoccum, T. durum, T. spelta and T. aestivum. Moreover, Gpc-A1, Gpc-D1, and Gpc-2 wheat genes have been found in chromosomes 6A, 6D and homeologous group 2, respectively. All these genes have been identified as NAC transcription factors, which play an important role in the accelerated senescence of plants and remobilization of nutrients from leaves to grain. The genes related to Gpc-B1 from T. dicoccoides were found in the G genome of T. timopheevii and B (=S) genome of different species of Aegilops sect. sitopsis. Functional Gpc-B1 alleles have been introduced into commercial tetra- and hexaploid wheat cultivars, and it resulted in the creation of new highprotein and high-yield cultivars and series of nearly isogenic lines in different countries. They are promising sources for research and wheat breeding purposes.

  5. 5

    المصدر: Genes, Vol 10, Iss 2, p 72 (2019)
    Genes
    Volume 10
    Issue 2

    الوصف: In general, yield and fruit quality strongly rely on efficient nutrient remobilization during plant development and senescence. Transcriptome changes associated with senescence in spring oilseed rape grown under optimal nitrogen supply or mild nitrogen deficiency revealed differences in senescence and nutrient mobilization in old lower canopy leaves and younger higher canopy leaves [1]. Having a closer look at this transcriptome analyses, we identified the major classes of seed storage proteins (SSP) to be expressed in vegetative tissue, namely leaf and stem tissue. Expression of SSPs was not only dependent on the nitrogen supply but transcripts appeared to correlate with intracellular H2O2 contents, which functions as well-known signaling molecule in developmental senescence. The abundance of SSPs in leaf material transiently progressed from the oldest leaves to the youngest. Moreover, stems also exhibited short-term production of SSPs, which hints at an interim storage function. In order to decipher whether hydrogen peroxide also functions as a signaling molecule in nitrogen deficiency-induced senescence, we analyzed hydrogen peroxide contents after complete nitrogen depletion in oilseed rape and Arabidopsis plants. In both cases, hydrogen peroxide contents were lower in nitrogen deficient plants, indicating that at least parts of the developmental senescence program appear to be suppressed under nitrogen deficiency.

    وصف الملف: application/pdf

  6. 6

    المساهمون: Ecophysiologie Végétale, Agronomie et Nutritions (EVA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), French National Research Agency [ANR-11-BTBR-004], French Ministry of Research, PhD Doctoral School (EDNBISE, Ecole Doctorale Normande Biologie Integrative, Sante, Environnement), ERA-IB project 'PRODuCE', Max Planck Society, COST [CM1004], University of Oxford

    المصدر: Plant Science
    Plant Science, Elsevier, 2016, 246, pp.139-153. ⟨10.1016/j.plantsci.2016.02.011⟩

    الوصف: International audience; Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation.

    وصف الملف: application/pdf

  7. 7

    المؤلفون: Reza Amiri, Ezatollah Farshadfar

    المصدر: Genetika, Vol 48, Iss 1, Pp 139-149 (2016)

    الوصف: In order to evaluate genetic variability and estimation of remobilization related traits in wheat using biometrical genetic techniques an experiment was conducted in a randomized complete blocks design with three replicates under post-anthesis drought stress conditions in the Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran during 2011-2012 cropping season. The results of analysis of variance showed significant differences between the genotypes for all studied traits except current photosynthesis (CP) and current photosynthesis share into kernel yield (CPSKY). High genetic gain and broad sense heritability estimates were observed for penultimate remobilization share into kernel yield (PenRSKY) and internodes remobilization share into kernel yield (IRSKY) indicating high genetic potential, low effect of environment and predominant role of additive gene effect on their expression. Spike dry matter remobilization (SDMR), spike dry matter remobilization efficiency (SDMRE) and spike remobilization share into kernel yield (SRSKY) exhibited the highest phenotypic and genetic positive correlation with kernel yield (KY). Moreover, the highest genotypic and phenotypic covariance was observed between kernel yield (KY) and SDMR, CP, SDMRE and SRSKY, respectively. The highest environmental covariance was identified between kernel yield (KY), peduncle dry matter remobilization (PedDMR) and penultimate dry matter remobilization (PenDMR), respectively. High co-heritability was detected between SDMRE and PedDMR, PedDMRE and PenDMR and between peduncle remobilization share into kernel yield (PedRSKY) and internodes dry matter remobilization efficiency (IDMRE), suggesting that selection of either of the traits would simultaneously affect the others, positively.

  8. 8

    المصدر: Genetika, Vol 47, Iss 2, Pp 751-763 (2015)
    Genetika-Belgrade

    الوصف: Knowledge about the effect of genotypic variation and sowing date on dry matter accumulation, remobilization and partitioning in winter barley is important for crop management. Therefore, in field studies, six winter barley genotypes of various origin and maturity groups were studied across four sowing dates. In general, grain yield and dry matter content decreased with delayed sowing, after mid-October, and average grain yield in late October and November sowing was lower 14.2% and 16.9%, respectively, compared to the yield in the optimal sowing date. Among the tested genotypes, high grain yield and dry matter content was obtained from late and medium early barley genotypes. Delayed sowing dates, on average, reduced dry matter remobilization and contribution of vegetative dry matter to grain yield. In years characterized by high spring precipitation, late September and early October sowing of medium early and late barley genotypes enable increased accumulation and remobilization of dry matter and obtainment of high grain yield. [Projekat Ministarstva nauke Republike Srbije, br. TR-31066: Modern breeding of small grains for present and future needs]

  9. 9

    المصدر: Plant, Cell & Environment

    الوصف: MicroRNAs (miRNAs) are a class of small RNAs, which typically function by guiding cleavage of target mRNAs. They are known to play roles in a variety of plant processes including development, responses to environmental stresses and senescence. To identify senescence regulation of miRNAs in Arabidopsis thaliana, eight small RNA libraries were constructed and sequenced at four different stages of development and senescence from both leaves and siliques, resulting in more than 200 million genome-matched sequences. Parallel analysis of RNA ends libraries, which enable the large-scale examination of miRNA-guided cleavage products, were constructed and sequenced, resulting in over 750 million genome-matched sequences. These large datasets led to the identification a new senescence-inducible small RNA locus, as well as new regulation of known miRNAs and their target genes during senescence, many of which have established roles in nutrient responsiveness and cell structural integrity. In keeping with remobilization of nutrients thought to occur during senescence, many miRNAs and targets had opposite expression pattern changes between leaf and silique tissues during the progression of senescence. Taken together, these findings highlight the integral role that miRNAs may play in the remobilization of resources and alteration of cellular structure that is known to occur in senescence.

  10. 10

    المساهمون: Ecophysiologie Végétale, Agronomie et Nutritions (EVA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Recherche Agronomique (INRA), Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-AGROCAMPUS OUEST, Littoral, Environnement, Télédétection, Géomatique (LETG - Caen), Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG), Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN), Université de Nantes (UN)-Université de Nantes (UN)-Université de Caen Normandie (UNICAEN), Université de Nantes (UN)-Université de Nantes (UN), Institut National de la Recherche Agronomique (INRA)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-Université de Nantes (UN)-École pratique des hautes études (EPHE)-Université de Brest (UBO)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN), AGROCAMPUS OUEST-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Recherche Agronomique (INRA)

    المصدر: Journal of Agricultural Science
    Journal of Agricultural Science, 2014, 152 (4), pp.616-633. ⟨10.1017/S0021859613000105⟩
    Journal of Agricultural Science, Cambridge University Press (CUP), 2014, 152 (4), pp.616-633. ⟨10.1017/S0021859613000105⟩

    الوصف: SUMMARYSulphur (S) is one of the six main macroelements required to sustain the growth of plants. Sources include soil, fertilizer and atmospheric deposition, which has been reduced by 85% over the last three decades. Risks of S deficiencies are now recognized in high S-demanding species such as Brassica napus L. With the aims of evaluating the risk of excessive or insufficient fertilization and identifying robust relationships that may be used as plant S status indicators, 57 commercial crops of oilseed rape were selected among contrasting soils and along a rainfall gradient that may affect soil S availability. Cultivation practices were investigated and the S and nitrogen (N) concentrations of soil, senescing leaves, stems and seeds were analysed. Despite an excessive organic N supply and large variation in S supply (from 0 to 112 kg S/ha), principal component analysis using 43 parameters indicated that seed yield was poorly related to N and S fertilization rates. While the N and protein-N concentrations in seeds were inversely related to oil and glucosinolate concentrations, they were linked to S and sulphate (SO42−) accumulation in the seeds. Sulphate concentrations in senescing leaves, stems or seeds could be deduced from total S concentrations, as they were positively and highly correlated. Sulphate accounted for on average 0·69 of total S in senescing leaves with minimum and maximum values of 0·007 and 0·94, which revealed conditions of limited and excess supply of S, respectively. This high variation of SO42− concentration in leaves can be interpreted as the result of its mobilization triggered by S deficiency, but cannot be used alone as an indicator of plant S status. A comparison with plants grown in controlled conditions under different S supplies suggests that the intensity of S starvation affects N metabolism, leading to NO3− (nitrate) accumulation. It is further suggested that dual evaluation of SO42− and NO3− concentrations in senescing leaves could be used at the vegetative stage as a field indicator to adjust S fertilization.