دورية أكاديمية

Chemical Composition, Antibacterial Activity and Mechanism of Action of Fermentation Products from Aspergillus Niger xj.

التفاصيل البيبلوغرافية
العنوان: Chemical Composition, Antibacterial Activity and Mechanism of Action of Fermentation Products from Aspergillus Niger xj.
المؤلفون: Wei, Longfeng, Ran, Jiang, Li, Zhu, Zhang, Qinyu, Guo, Kun, Mu, Shuzhen, Xie, Yudan, Xie, Ailin, Xiao, Yang
المصدر: Applied Biochemistry & Biotechnology; Feb2024, Vol. 196 Issue 2, p878-895, 18p
مستخلص: Six compounds were isolated and purified from the crude acetone extract of Aspergillus niger xj. Characterization of all compounds was done by NMR and MS. On the basis of chemical and spectral analysis structure, six compounds were elucidated as metazachlor (1), nonacosane (2), palmitic acid (3), 5,5'-oxybis(5-methylene-2-furaldehyde) (4), dimethyl 5-nitroisophthalate (5) and cholesta-3,5-dien-7-one (6), respectively, and compounds 1, 4, 5 and 6 were isolated for the first time from A. niger. To evaluate the antibacterial activity of compounds 1–6 against three plant pathogenic bacteria (Agrobacterium tumefaciens T-37, Erwinia carotovora EC-1 and Ralstonia solanacearum RS-2), and the minimum inhibitory concentrations (MICs) were determined by broth microdilution method in 96-well microtiter plates. Results of the evaluation of the antibacterial activity showed that T-37 strain was more susceptible to metazachlor with the lowest MIC of 31.25 µg/mL. The antibacterial activity of metazachlor has rarely been reported, thus the antibacterial mechanism of metazachlor against T-37 strain were investigated. The permeability of cell membrane demonstrated that cells membranes were broken by metazachlor, which caused leakage of ions in cells. SDS-PAGE of T-37 proteins indicated that metazachlor could damage bacterial cells through the destruction of cellular proteins. Scanning electron microscopy results showed obvious morphological and ultrastructural changes in the T-37 cells, further confirming the cell membrane damages caused by metazachlor. Overall, our findings demonstrated that the ability of metazachlor to suppress the growth of T-37 pathogenic bacteria makes it potential biocontrol agents. [ABSTRACT FROM AUTHOR]
Copyright of Applied Biochemistry & Biotechnology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:02732289
DOI:10.1007/s12010-023-04577-9