يعرض 1 - 10 نتائج من 11 نتيجة بحث عن '"Gutiérrez, Marlen"', وقت الاستعلام: 0.68s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: N.E.A. Murray, M.B. Quam, A. Wilder-Smith Epidemiology of dengue: past, present and future prospects Clin Epidemiol, 5 (2013), pp. 299-309 ; S. Bhatt, P.W. Gething, O.J. Brady, J.P. Messina, A.W. Farlow, C.L. Moyes, et al. The global distribution and burden of dengue Nature, 496 (2013), pp. 504-507 ; H.A. Rothan, H. Bahrani, Z. Mohamed, N. Abd Rahman, R. Yusof Fusion of protegrin-1 and plectasin to MAP30 shows significant inhibition activity against Dengue virus replication PLoS One, 9 (2014), p. e94561 ; M.Q. Benedict, R.S. Levine, W.A. Hawley, L.P. Lounibos Spread of the tiger: global risk of invasion by the ....

    جغرافية الموضوع: 22(4)

    وصف الملف: 257-272; application/pdf

    العلاقة: Braz J Infect Dis; https://www.sciencedirect.com/science/article/pii/S1413867018300540?via%3DihubTest; http://hdl.handle.net/20.500.12494/15303Test; Quintero-Gil D. C., Uribe-Yepes A., Ospina M., Díaz FJ y Martinez-Gutierrez M. (2018). Differences in the replicative capacities of clinical isolates of dengue virus in C6/36 cells and in urban populations of Aedes aegypti from Colombia, South America. Braz J Infect Dis. 2018 Jul - Aug;22(4):257-272. Recuperado de

  2. 2
    دورية أكاديمية

    جغرافية الموضوع: 22(4)

    وصف الملف: 257-272; application/pdf

    العلاقة: https://www.sciencedirect.com/science/article/pii/S1413867018300540?via%3DihubTest; Braz J Infect Dis; N.E.A. Murray, M.B. Quam, A. Wilder-Smith Epidemiology of dengue: past, present and future prospects Clin Epidemiol, 5 (2013), pp. 299-309; S. Bhatt, P.W. Gething, O.J. Brady, J.P. Messina, A.W. Farlow, C.L. Moyes, et al. The global distribution and burden of dengue Nature, 496 (2013), pp. 504-507; H.A. Rothan, H. Bahrani, Z. Mohamed, N. Abd Rahman, R. Yusof Fusion of protegrin-1 and plectasin to MAP30 shows significant inhibition activity against Dengue virus replication PLoS One, 9 (2014), p. e94561; M.Q. Benedict, R.S. Levine, W.A. Hawley, L.P. Lounibos Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus Vector Borne Zoo Dis (Larchmont, NY), 7 (2007), pp. 76-85; E. Holmes, S. Twiddy The origin, emergence and evolutionary genetics of dengue virus Infect Genet Evol, 3 (2003), pp. 19-28; R. Bartenschlager, S. Miller Molecular aspects of Dengue virus replication Future Microbiol, 3 (2008), pp. 155-165; J.A. Usme-Ciro, J.A. Mendez, K.D. Laiton, A. Páez The relevance of dengue virus genotypes surveillance at country level before vaccine approval Hum Vac Immunotherapeut, 10 (2014), pp. 2674-2678; L.A. Villar, D.P. Rojas, S. Besada-Lombana, E. Sarti Epidemiological Trends of Dengue Disease in Colombia (2000-2011): A Systematic Review PLoS Negl Trop Dis, 9 (2015), pp. 1-16; H. Rodríguez, F. de la Hoz Dengue and dengue and vector behaviour in Cáqueza, Colombia Rev Sal Púb (Bogotá, Colombia), 7 (2004), pp. 1-15; J. Nicholson, S.A. Ritchie, A.F. Van Den Hurk Aedes albopictus (Diptera: Culicidae) as a potential vector of endemic and exotic arboviruses in Australia J Med Entomol, 51 (2014), pp. 661-669; J. Jaimes-Dueñez, S. Arboleda, O. Triana-Chávez, A. Gómez-Palacio Spatio-temporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia PLoS Negl Trop Dis, 9 (2015), pp. 1-21; L.D. Kramer, G.D. Ebel Dynamics of flavivirus infection in mosquitoes Adv Virus Res, 60 (2003), pp. 187-232; C.C. Liu, S.C. Wu Mosquito and mammalian cells grown on microcarriers for four‐serotype dengue virus production: variations in virus titer, plaque morphology, and replication rate Biotechnol Bioeng, 85 (2004), pp. 482-488; M.L. Muñoz, A. Cisneros, J. Cruz, P. Das, R. Tovar, A. Ortega Putative dengue virus receptors from mosquito cells FEMS Microbiol Lett, 168 (1998), pp. 251-258; J. Salas-Benito, J. Reyes-Del Valle, M. Salas-Benito, I. Ceballos-Olvera, C. Mosso, R.M. del Angel Evidence that the 45-kD glycoprotein, part of a putative dengue virus receptor complex in the mosquito cell line C6/36, is a Heat-Shock-related protein Am J Trop Med Hyg, 77 (2007), pp. 283-290; P. Sakoonwatanyoo, V. Boonsanay, D.R. Smith Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein Intervirology, 49 (2006), pp. 161-172; G. Kuno Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains J Med Entomol, 47 (2014), pp. 957-971; J.L. Hardy, E.J. Houk, L.D. Kramer, W.C. Reeves Intrinsic factors affecting vector competence of mosquitoes for arboviruses Ann Rev Entomol, 28 (1983), pp. 229-262; J.R. Anderson, R. Rico-Hesse Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus Am J Trop Med Hyg, 75 (2006), pp. 886-892; D.J. Gubler, S. Nalim, R. Tan, H. Saipan, J. Sulianti Saroso Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti Am J Trop Med Hyg, 28 (1979), pp. 1045-1052; C. Gomez-Machorro, K.E. Bennett, M. del Lourdes Munoz, W.C. Black 4th Quantitative trait loci affecting dengue midgut infection barriers in an advanced intercross line of Aedes aegypti Insect Mol Biol, 13 (2004), pp. 637-648; L.B. Dickson, I. Sanchez-Vargas, M. Sylla, K. Fleming, W.C. Black 4th Vector competence in West African Aedes aegypti Is Flavivirus species and genotype dependent PLoS Negl Trop Dis, 8 (2014), p. e3153; J.M. Cadavid, G. Rúa, O. Campo, G. Bedoya, W. Rojas Microgeographic and temporal genetic changes of Aedes aegypti from Medellín, Colombia Biomédica, 35 (2014), pp. 53-61; M.C. Ospina, F.J. Diaz, J.E. Osorio Prolonged co-circulation of two distinct Dengue virus Type 3 lineages in the hyperendemic area of Medellin, Colombia Am J Trop Med Hyg, 83 (2010), pp. 72-78; O.P. Forattini Culicidologia Médica: Identificação, Biologia, Epidemiologia, vol. 2 (1996), p. 549; L.J. Chien, T.L. Liao, P.Y. Shu, J.H. Huang, D.J. Gubler, G.J. Chang Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses J Clin Microbiol, 44 (2006), pp. 1295-1304; S. Kumar, G. Stecher, K. Tamura MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets Mol Biol Evol (2016) msw054; L. Gutiérrez-Ruiz, D.C. Quintero-Gil, M. Martínez-Gutiérrez Actualización en diagnóstico del dengue: evolución de las técnicas y su aplicación real en la clínica Medicina y laboratorio, 18 (2012), pp. 411-441; M. Hussain, S. Asgari MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells Proc Natl Acad Sci U S A, 111 (2014), pp. 2746-2751; M.I. Salazar, J.H. Richardson, I. Sánchez-Vargas, K.E. Olson, B.J. Beaty Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes BMC Microbiol, 7 (2007), p. 9; I. Sánchez-Vargas, J.C. Scott, B.K. Poole-Smith, A.W. Franz, V. Barbosa-Solomieu, J. Wilusz, et al. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway PLoS Pathog, 5 (2009), p. e1000299; X.X. Guo, X.J. Zhu, C.X. Li, Y.D. Dong, Y.M. Zhang, D. Xing, et al. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus Acta Trop, 128 (2013), pp. 566-570; J. Junjhon, J.G. Pennington, T.J. Edwards, R. Perera, J. Lanman, R.J. Kuhn Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells J Virol, 88 (2014), pp. 4687-4697; https://hdl.handle.net/20.500.12494/15303Test; Quintero-Gil D. C., Uribe-Yepes A., Ospina M., Díaz FJ y Martinez-Gutierrez M. (2018). Differences in the replicative capacities of clinical isolates of dengue virus in C6/36 cells and in urban populations of Aedes aegypti from Colombia, South America. Braz J Infect Dis. 2018 Jul - Aug;22(4):257-272. Recuperado de

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5

    المصدر: Kraemer MU, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global distribution of the ar-bovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:e08347 ; Brent SE, Watts A, Cetron M, German M, Kraemer MU, Bogoch II, et al. International travel between global ur-ban centres vulnerable to yellow fever transmission. Bull World Health Organ. 2018;96(5):343. ; Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7 ; Cauchemez S, Ledrans M, Poletto C, Quenel P, De Valk H, Colizza V, et al. ....

    جغرافية الموضوع: 14(suppl 1)

    وصف الملف: 28-29; application/pdf

    العلاقة: Iatreia; https://revistas.udea.edu.co/index.php/iatreia/article/view/342308Test; http://hdl.handle.net/20.500.12494/32928Test; Olave, N. E. C., Vélez, I. D., & Gutiérrez, M. M. (2020). 13. Evaluacion de la competencia vectorial de Aedes aegypti y Aedes albopictus de zonas endemicas frente a la infeccion y co-infeccion por DENV, ZIKV y CHIKV. Iatreia, 33, S-28.

  6. 6

    جغرافية الموضوع: 14(suppl 1)

    وصف الملف: 28-29 p.; application/pdf

    العلاقة: https://revistas.udea.edu.co/index.php/iatreia/article/view/342308Test; Iatreia; Kraemer MU, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global distribution of the ar-bovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:e08347; Brent SE, Watts A, Cetron M, German M, Kraemer MU, Bogoch II, et al. International travel between global ur-ban centres vulnerable to yellow fever transmission. Bull World Health Organ. 2018;96(5):343.; Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7; Cauchemez S, Ledrans M, Poletto C, Quenel P, De Valk H, Colizza V, et al. Local and regional spread of chikungunya fever in the Americas. Euro Surveill. 2014;19(28):20854; Johansson MA, Powers AM, Pesik N, Cohen NJ, Staples JE. Nowcasting the spread of chikungunya virus in the Americas. PloS one. 2014;9(8):e104915; arrera JP, Díaz Y, Denis B, de Mosca IB, Rodriguez D, Cedeño I, et al. Unusual pattern of chikungunya virus epidemic in the Americas, the Panamanian experience. PLoS Negl Trop Dis. 2017 Feb;11(2):e0005338; O’Meara GF, Evans LF Jr, Gettman AD, Cuda JP. Spread of Aedes albopictus and decline of Ae. aegypti (Diptera: Culicidae) in Florida. J Med Ento-mol. 1995;32(4):554-562; Tabachnick WJ. Nature, nurture and evolution of intra-species variation in mosquito arbovirus trans-mission competence. Int J Environ Res Public Health. 2013;10(1):249-277.; Rueda LM. Pictorial keys for the identification of mos-quitoes (Diptera: Culicidae) associated with Dengue Vi-rus Transmission. Zootaxa. 2004;589(1):60.; Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chlo-roform extraction. Anal Biochem. 1987;162(1):156-159; Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 2006;1(2):581-585; Carrillo-Hernández MY, Ruiz-Saenz J, Villamizar LJ, Gó-mez-Rangel SY, Martínez-Gutierrez M. Co-circulation and simultaneous co-infection of dengue, chikungun-ya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect Dis. 2018;18(1):61; Moore M, Sylla M, Goss L, et al. Dual African origins of global Aedes aegypti s.l. populations revealed by mito-chondrial DNA. PLoS Negl Trop Dis. 2013;7(4):e2175.; https://hdl.handle.net/20.500.12494/32928Test; Olave, N. E. C., Vélez, I. D., & Gutiérrez, M. M. (2020). 13. Evaluacion de la competencia vectorial de Aedes aegypti y Aedes albopictus de zonas endemicas frente a la infeccion y co-infeccion por DENV, ZIKV y CHIKV. Iatreia, 33, S-28.

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية