دورية أكاديمية

Enrofloxacin and Sulfamethoxazole Sorption on Carbonized Leonardite: Kinetics, Isotherms, Influential Effects, and Antibacterial Activity toward S. aureus ATCC 25923

التفاصيل البيبلوغرافية
العنوان: Enrofloxacin and Sulfamethoxazole Sorption on Carbonized Leonardite: Kinetics, Isotherms, Influential Effects, and Antibacterial Activity toward S. aureus ATCC 25923
المؤلفون: Chokejaroenrat, Chanat, Sakulthaew, Chainarong, Satchasataporn, Khomson, Snow, Daniel D., Ali, Tarik E., Assiri, Mohammed A., Watcharenwong, Apichon, Imman, Saksit, Suriyachai, Nopparat, Kreetachat, Torpong
المصدر: Faculty Publications from The Water Center
بيانات النشر: DigitalCommons@University of Nebraska - Lincoln
سنة النشر: 2022
المجموعة: University of Nebraska-Lincoln: DigitalCommons@UNL
مصطلحات موضوعية: adsorption isotherm, adsorption kinetics, antibiotic adsorption, carbonization, elovich, enrofloxacin, growth inhibition zone, intraparticle diffusion, leonardite, sulfamethoxazole, Civil and Environmental Engineering, Environmental Indicators and Impact Assessment, Fresh Water Studies, Hydraulic Engineering, Hydrology, Sustainability, Water Resource Management
الوصف: Excessive antibiotic use in veterinary applications has resulted in water contamination and potentially poses a serious threat to aquatic environments and human health. The objective of the current study was to quantify carbonized leonardite (cLND) adsorption capabilities to remove sulfamethoxazole (SMX)- and enrofloxacin (ENR)-contaminated water and to determine the microbial activity of ENR residuals on cLND following adsorption. The cLND samples prepared at 450oC and 850oC (cLND450 and cLND550, respectively) were evaluated for structural and physical characteristics and adsorption capabilities based on adsorption kinetics and isotherm studies. The low pyrolysis temperature of cLND resulted in a heterogeneous surface that was abundant in both hydrophobic and hydrophilic functional groups. SMX and ENR adsorption were best described using a pseudo-second-order rate expression. The SMX and ENR adsorption equilibrium data on cLND450 and cLND550 revealed their better compliance with a Langmuir isotherm than with four other models based on 2.3-fold higher values of qmENR than qmSMX. Under the presence of the environmental interference, the electrostatic interaction was the main contributing factor to the adsorption capability. Microbial activity experiments based on the growth of Staphylococcus aureus ATCC 25923 revealed that cLND could successfully adsorb and subsequently retain the adsorbed antibiotic on the cLND surface. This study demonstrated the potential of cLND550 as a suitable low-cost adsorbent for the highly efficient removal of antibiotics from water.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: unknown
العلاقة: https://digitalcommons.unl.edu/watercenterpubs/69Test; https://digitalcommons.unl.edu/context/watercenterpubs/article/1066/viewcontent/Chokejoenrat_ANTIBIO_2022_Enrofloxacin_and_Sulfamethoxazole.pdfTest
الإتاحة: https://digitalcommons.unl.edu/watercenterpubs/69Test
https://digitalcommons.unl.edu/context/watercenterpubs/article/1066/viewcontent/Chokejoenrat_ANTIBIO_2022_Enrofloxacin_and_Sulfamethoxazole.pdfTest
رقم الانضمام: edsbas.53211AD6
قاعدة البيانات: BASE