Molecular streaming and its voltage control in ångström-scale channels

التفاصيل البيبلوغرافية
العنوان: Molecular streaming and its voltage control in ångström-scale channels
المؤلفون: S. A. Dar, Alessandro Siria, Ashok Keerthi, Timothée Mouterde, Boya Radha, Anthony R. Poggioli, Andre K. Geim, Lydéric Bocquet
المساهمون: School of Physics and Astronomy [Manchester], University of Manchester [Manchester], Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)
المصدر: Nature
Nature, Nature Publishing Group, 2019, 567 (7746), pp.87-90. ⟨10.1038/s41586-019-0961-5⟩
Mouterde, T, Keerthi, A, Poggioli, A R, Dar, S A, Siria, A, Geim, A K, Bocquet, L & Radha, B 2019, ' Molecular streaming and its voltage control in ångström-scale channels ', Nature, vol. 567, no. 7746, pp. 87-90 . https://doi.org/10.1038/s41586-019-0961-5Test
سنة النشر: 2018
مصطلحات موضوعية: Materials science, Ionic bonding, Nanofluidics, 02 engineering and technology, Condensed Matter - Soft Condensed Matter, 010402 general chemistry, 01 natural sciences, Ion, law.invention, symbols.namesake, chemistry.chemical_compound, National Graphene Institute, law, Pakistan † these authors contributed equally to the work, Lahore, [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph], [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat], Ion transporter, [PHYS]Physics [physics], Multidisciplinary, Condensed Matter - Mesoscale and Nanoscale Physics, [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph], Graphene, ResearchInstitutes_Networks_Beacons/03/02, 021001 nanoscience & nanotechnology, KSK campus, 0104 chemical sciences, chemistry, Chemical physics, Boron nitride, ResearchInstitutes_Networks_Beacons/national_graphene_institute, symbols, van der Waals force, 0210 nano-technology, Transport phenomena, Advanced materials
الوصف: Over the past decade, the ability to reduce the dimensions of fluidic devices to the nanometre scale (by using nanotubes 1–5 or nanopores 6–11 , for example) has led to the discovery of unexpected water- and ion-transport phenomena 12–14 . More recently, van der Waals assembly of two-dimensional materials 15 has allowed the creation of artificial channels with ångström-scale precision 16 . Such channels push fluid confinement to the molecular scale, wherein the limits of continuum transport equations 17 are challenged. Water films on this scale can rearrange into one or two layers with strongly suppressed dielectric permittivity 18,19 or form a room-temperature ice phase 20 . Ionic motion in such confined channels 21 is affected by direct interactions between the channel walls and the hydration shells of the ions, and water transport becomes strongly dependent on the channel wall material 22 . We explore how water and ionic transport are coupled in such confinement. Here we report measurements of ionic fluid transport through molecular-sized slit-like channels. The transport, driven by pressure and by an applied electric field, reveals a transistor-like electrohydrodynamic effect. An applied bias of a fraction of a volt increases the measured pressure-driven ionic transport (characterized by streaming mobilities) by up to 20 times. This gating effect is observed in both graphite and hexagonal boron nitride channels but exhibits marked material-dependent differences. We use a modified continuum framework accounting for the material-dependent frictional interaction of water molecules, ions and the confining surfaces to explain the differences observed between channels made of graphene and hexagonal boron nitride. This highly nonlinear gating of fluid transport under molecular-scale confinement may offer new routes to control molecular and ion transport, and to explore electromechanical couplings that may have a role in recently discovered mechanosensitive ionic channels 23 .
وصف الملف: application/pdf
تدمد: 1476-4687
0028-0836
1476-4679
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::882d37bb29e561fdf63ea492d8692fdcTest
https://pubmed.ncbi.nlm.nih.gov/30842639Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....882d37bb29e561fdf63ea492d8692fdc
قاعدة البيانات: OpenAIRE