مورد إلكتروني

Bioaugmentation strategy for overcoming ammonia inhibition during biomethanation of a protein-rich substrate

التفاصيل البيبلوغرافية
العنوان: Bioaugmentation strategy for overcoming ammonia inhibition during biomethanation of a protein-rich substrate
المصدر: Tian , H , Mancini , E , Treu , L , Angelidaki , I & Fotidis , I 2019 , ' Bioaugmentation strategy for overcoming ammonia inhibition during biomethanation of a protein-rich substrate ' , Chemosphere , vol. 231 , pp. 415-422 .
بيانات النشر: 2019
تفاصيل مُضافة: Tian, Hailin
Mancini, Enrico
Treu, Laura
Angelidaki, Irini
Fotidis, Ioannis
نوع الوثيقة: Electronic Resource
مستخلص: High ammonia levels inhibit anaerobic digestion (AD) process and bioaugmentation with ammonia tolerant methanogenic culture is proposed to alleviate ammonia inhibition. In the current study, hydrogenotrophic Methanoculleus bourgensis was bioaugmented in an ammonia-inhibited continuous reactor fed mainly with microalgae (a protein-rich biomass), at extreme ammonia levels (i.e. 11 g NH4+-N L−1). The results showed 28% increase in methane production immediately after bioaugmentation. Moreover, volatile fatty acids decreased rapidly from more than 5 g L−1 to around 1 g L−1, with a fast reduction in propionate concentration. High throughput 16s rRNA gene sequencing demonstrated that the bioaugmented M. bourgensis doubled its relative abundance after bioaugmentation. “Microbiological domino effect”, triggered by the bioaugmented M. bourgensis establishing a newly efficient community, was proposed as the working mechanism of the successful bioaugmentation. Additionally, a strong aceticlastic methanogenesis was found at the end of the experiment evidenced by the dominant presence of Methanosarcina soligelidi and the low abundance of syntrophic acetate oxidising bacteria at the final period. Overall, for the first time, this study proved the positive effect of bioaugmentation on ammonia inhibition alleviation of the microalgae-dominating fed reactor, paving the way of efficient utilization of other protein-rich substrates in the future.
مصطلحات الفهرس: Methane, Ammonia inhibition, Microbial community, Methanoculleus bourgensis, Hydrogen partial pressure, article
URL: https://orbit.dtu.dk/en/publications/2d07b1d0-6f96-4c37-9bc9-64ac600cdc43Test
https://backend.orbit.dtu.dk/ws/files/180022134/4444.pdfTest
الإتاحة: Open access content. Open access content
info:eu-repo/semantics/openAccess
ملاحظة: application/pdf
English
أرقام أخرى: EDN oai:pure.atira.dk:publications/2d07b1d0-6f96-4c37-9bc9-64ac600cdc43
1280589197
المصدر المساهم: TECHNICAL KNOWLEDGE CTR DENMARK
From OAIster®, provided by the OCLC Cooperative.
رقم الانضمام: edsoai.on1280589197
قاعدة البيانات: OAIster