يعرض 1 - 10 نتائج من 32 نتيجة بحث عن '"interacciones moleculares"', وقت الاستعلام: 1.11s تنقيح النتائج
  1. 1
    رسالة جامعية

    المؤلفون: López Muñoz, Laura

    المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Ciències Experimentals i de la Salut

    مرشدي الرسالة: Pastor Maeso, Manuel

    المصدر: TDX (Tesis Doctorals en Xarxa)

    مصطلحات موضوعية: Receptores acoplados a proteína G (GPCR), Receptor 5-HT2A, Receptor D3, Receptor D2, Ligando, Clozapina, Derivados Benzofuranonas, Risperidona, Olanzapina, esquizofrenia, Derivados Benzofuranonas Derivados Benzolactámico, estudios de relación cuantitativa estructura- acti, Análisis de Componentes Principales (PCA), métodos de regresión, campos de interacción Molecular (MIF), Perfil Multireceptorial, modelado por homología, Docking, sitio de unión, interacciones moleculares, selectividad, afinidad de unión, Diana, Meta-Diana, efectos secundarios, fármaco antipsicótico típico, fármaco antipsicótico atípico, agonista, antagonista, membrana, receptoroma, rhodopsina, estructura de rayos X, descriptores moleculares, farmacología, análisis multivariante, procedimiento integrado, diseño de fármacos asistido por ordenador, Computer-aided drug design, Integrated approach, Multivariate analysis, Pharmacology, Molecular descriptors, X-ray structure, Rhodopsin, Receptorome, Membrane, Antagonist, Agonist, Atypical antipsychotic drug, Typical antipsychotic drug, Side effects, Off-target, Target, Selectivity, Binding affinity, Molecular interactions, Binding site, Homology modeling, Multireceptor profile, Molecular interaction Field (MIF), Partial Least Squares (PLS), Principal Component Analysis (PCA), 3D Quantitave Structural-Activity-Relationship (3D, Schizophrenia, Benzolactam Derivatives, Benzofuranone Derivatives, Risperidone, Olanzapine, Clozapine, Ligand, Adrenergic receptors, Muscarinic receptors, Histamine receptors, Serotonin receptors, Dopamine receptors, beta2-Adrenergic receptor, D2 receptor, D3 receptor, 5-HT2A receptor, G protein-coupled receptors (GPCR)

    وصف الملف: application/pdf

  2. 2
    رسالة جامعية

    المؤلفون: Garau Rosselló, Carolina

    المساهمون: University/Department: Universitat de les Illes Balears. Departament de Química

    مرشدي الرسالة: Frontera Beccaria, Antonio, Deyà Serra, Pere M.

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3
    رسالة جامعية
  4. 4
    رسالة جامعية
  5. 5
    رسالة جامعية

    المساهمون: Maldonado Villamil, Mauricio, Aplicaciones Analíticas de Compuestos Orgánicos (Aaco)

    وصف الملف: 112 páginas; application/pdf

    العلاقة: Pitt, M. A. & Johnson, D. W. Main group supramolecular chemistry. Chem. Soc. Rev. 36, 1441–1453 (2007).; Izatt, R. M. Charles J. Pedersen’s legacy to chemistry. Chem. Soc. Rev. 46, 2380– 2384 (2017).; Agrawal, Y. K. & Patadia, R. N. Studies on resorcinarenes and their analytical applications. Rev. Anal. Chem. 25, 155–239 (2006).; Morand, R., Donzelli, M., Haschke, M. & Krähenbühl, S. Quantification of plasma carnitine and acylcarnitines by high-performance liquid chromatography-tandem mass spectrometry using online solid-phase extraction. Anal. Bioanal. Chem. 405, 8829–8836 (2013).; Johnson, D. W. An acid hydrolysis method for quantification of plasma free and total carnitine by flow injection tandem mass spectrometry. Clin. Biochem. 43, 1362–1367 (2010).; Zhang, Z. et al. Electrochemical enzyme biosensor for carnitine detection based on cathodic stripping voltammetry. Sensors Actuators, B Chem. 321, 128473 (2020).; Wang, M. et al. A simple and precise method for measurement of serum free carnitine and acylcarnitines by isotope dilution HILIC-ESI-MS/MS. Int. J. Mass Spectrom. 446, 116208 (2019).; Seline, K. G. & Johein, H. The determination of l-carnitine in several food samples. Food Chem. 105, 793–804 (2007).; Lu, W. H. et al. Using matrix-induced ion suppression combined with LC-MS/MS for quantification of trimethylamine-N-oxide, choline, carnitine and acetylcarnitine in dried blood spot samples. Anal. Chim. Acta 1149, 338214 (2021).; Rudolph, W., Remane, D., Wissenbach, D. K. & Peters, F. T. Liquid chromatography-mass spectrometry-based determination of ergocristine, ergocryptine, ergotamine, ergovaline, hypoglycin A, lolitrem B, methylene cyclopropyl acetic acid carnitine, N-acetylloline, N-formylloline, paxilline, and peramine in equine hai. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1117, 127–135 (2019).; Minkler, P. E., Stoll, M. S. K., Ingalls, S. T., Kerner, J. & Hoppel, C. L. Validated Method for the Quantification of Free and Total Carnitine, Butyrobetaine, and Acylcarnitines in Biological Samples. Anal. Chem. 87, 8994–9001 (2015).; Ahn, J. H., Kwak, B. M., Park, J. M., Kim, N. K. & Kim, J. M. Rapid determination of L-carnitine in infant and toddler formulas by liquid chromatography tandem mass spectrometry. Korean J. Food Sci. Anim. Resour. 34, 749–756 (2014).; Prokorátová, V., Kvasnička, F., Ševčík, R. & Voldřich, M. Capillary electrophoresis determination of carnitine in food supplements. J. Chromatogr. A 1081, 60–64 (2005).; Tan, X. et al. Novel competitive fluorescence sensing platform for l-carnitine based on cationic pillar[5]arene modified gold nanoparticles. Sensors (Switzerland) 18, (2018).; Chen, Y. C., Tsai, C. J. & Feng, C. H. Fluorescent derivatization combined with aqueous solvent-based dispersive liquid-liquid microextraction for determination of butyrobetaine, L-carnitine and acetyl-L-carnitine in human plasma. J. Chromatogr. A 1464, 32–41 (2016); Manjón, A., Obón, J. M. & Iborra, J. L. Determination of L-carnitine by flow injection analysis with NADH fluorescence detection. Anal. Biochem. 281, 176–181 (2000).; He, Q., Vargas-Zúñiga, G. I., Kim, S. H., Kim, S. K. & Sessler, J. L. Macrocycles as Ion Pair Receptors. Chem. Rev. 119, 9753–9835 (2019).; Ruiz-Botella, S., Vidossich, P., Ujaque, G., Vicent, C. & Peris, E. A Tetraferrocenyl Resorcinarene Cavitand as a Redox-Switchable Host of Ammonium Salts. Chem. - A Eur. J. 21, 10558–10565 (2015).; Taylor, P. J. Matrix effects: The Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin. Biochem. 38, 328–334 (2005).; Huang, Z. et al. Determination of inorganic pharmaceutical counterions using hydrophilic interaction chromatography coupled with a Corona® CAD detector. J. Pharm. Biomed. Anal. 50, 809–814 (2009).; Johnson, W. M., Kido Soule, M. C. & Kujawinski, E. B. Extraction efficiency and quantification of dissolved metabolites in targeted marine metabolomics. Limnol. Oceanogr. Methods 15, 417–428 (2017).; Lee, M. et al. Selective solid-phase extraction of catecholamines by the chemically modified polymeric adsorbents with crown ether. J. Chromatogr. A 1160, 340–344 (2007).; Chen, L. Q. et al. High-throughput and selective solid-phase extraction of urinary catecholamines by crown ether-modified resin composite fiber. J. Chromatogr. A 1561, 48–55 (2018).; Castillo-Aguirre, A. & Maldonado, M. Preparation of methacrylate-based polymers modified with chiral resorcinarenes and their evaluation as sorbents in norepinephrine microextraction. Polymers (Basel). 11, 1–21 (2019).; Velásquez-Silva, B. A., Castillo-Aguirre, A., Rivera-Monroy, Z. J. & Maldonado, M. Aminomethylated calix[4]resorcinarenes as modifying agents for glycidyl methacrylate (GMA) rigid copolymers surface. Polymers (Basel). 11, (2019).; Baeyer, A. Ueber die Verbindungen der Aldehyde mit den Phenolen und aromatischen Kohlenwasserstoffen. Berichte der Dtsch. Chem. Gesellschaft 5, 1094–1100 (1872).; Niederl, J. & Vogel, H. Aldeyde-Resorcinol Condensations. J. Am. Chem. Soc. 62, 2512 (1940).; Holger Erdtman and Sverker Hogberg. Tetrahedron Lett. 1679–1682 (1968).; Jain, V. K. & Kanaiya, P. H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 80, 75–102 (2011).; In, R., Recognition, M. & Devices, S. and Supramolecular Devices. 67–94 (1999).; Calixarenes: a versa tile class of macrocyclic compounds.; Verboom, W., Durie, A., Egberink, R. J. M., Asfari, Z. & Reinhoudt, D. N. Ipso Nitration of p-tert-Butylcalix[4]arenes. J. Org. Chem. 57, 1313–1316 (1992).; Cram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture). Angew. Chemie Int. Ed. English 27, 1009–1020 (1988).; Schneider, U. & Schneider, H. ‐J. Synthese und Eigenschaften von Makrocyclen aus Resorcinen sowie von entsprechenden Derivaten und Wirt‐Gast‐Komplexen. Chem. Ber. 127, 2455–2469 (1994).; Pfeiffer, C. R., Feaster, K. A., Dalgarno, S. J. & Atwood, J. L. Syntheses and characterization of aryl-substituted pyrogallol[4]arenes and resorcin[4]arenes. CrystEngComm 18, 222–229 (2015).; de Namor, A. F. D. et al. Thermodynamic and electrochemical aspects of the interactions of functionalised calix(4)arenes and metal cations in ‘allosteric media’’’. Pure Appl. Chem. 66, 435–440 (1994).; Iwanek, W. The synthesis of octamethoxyresorc[4]arenes catalysed by Lewis acids. Tetrahedron 54, 14089–14094 (1998).; McIldowie, M. J., Mocerino, M., Skelton, B. W. & White, A. H. Facile Lewis Acid Catalyzed Synthesis of C4 Symmetric Resorcinarenes. Org. Lett. 2, 3869–3871 (2000).; Yamakawa, Y., Ueda, M., Nagahata, R., Takeuchi, K. & Asai, M. Rapid synthesis of dendrimers based on calix[4]resorcinarenes. J. Chem. Soc. - Perkin Trans. 1 4135–4139 (1998). doi:10.1039/a806475j; Kijima, T.; Kato, Y.; Ohe, K.; et al. Bull. Chem. Soc. Jpn. 1994.pdf.; Lewis, P. T. et al. Tetraarylboronic Acid Resorcinarene Stereoisomers. Versatile New Substrates for Divergent Polyfunctionalization and Molecular Recognition. J. Org. Chem. 62, 6110–6111 (1997).; Beer, P. D. Meldola Medal Lecture. Redox responsive macrocyclic receptor molecules containing transition metal redox centres. Chem. Soc. Rev. 18, 409–450 (1989).; Curtis, A. D. M. Novel Calix[4]resorcinarene glycosides. Tetrahedron Lett. 38, 4295–4296 (1997).; Aoyama, Y., Tanaka, Y. & Sugahara, S. Molecular Recognition. 5. Molecular Recognition. 68, 5397–5404 (1989); Gibb, B. C., Chapman, R. G., Sherman, J. C. & Soc, D. J. J. A. C. Synthesis of Hydroxyl-Footed Cavitands their rigidity , enforced cavities , and synthetic viability . Thus , the incorporation of new functionalities into the pendant groups of these compounds would expand their versatility toward future applications . Fo. Reactions 1505–1509 (1996).; Kobayashi, K., Asakawa, Y., Kato, Y. & Aoyama, Y. Complexation of Hydrophobic Sugars and Nucleosides in Water with Tetrasulfonate Derivatives of Resorcinol Cyclic Tetramer Having a Polyhydroxy Aromatic Cavity: Importance of Guest–Host CH–π Interaction. J. Am. Chem. Soc. 114, 10307–10313 (1992).; Scott, M. P. & Sherburn, M. S. Resorcinarenes and Pyrogallolarenes. Comprehensive Supramolecular Chemistry II 1, (Elsevier, 2017).; Tunstad, L. M. et al. Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands. J. Org. Chem. 54, 1305–1312 (1989).; Morikawa, O., Ueno, R., Nakajima, K., Kobayashi, K. & Konishi, H. Trifluoromethanesulfonic acid-catalyzed synthesis of resorcinarenes: Cyclocondensation of 2-bromoresorcinol with aldehydes. Synthesis (Stuttg). 761– 765 (2002). doi:10.1055/s-2002-25765; Beyeh, N. K. & Rissanen, K. Tetranitroresorcin[4]arene: synthesis and structure of a new stereoisomer. Tetrahedron Lett. 50, 7369–7373 (2009).; Bourgeois, J. M. & Stoeckli-Evans, H. Synthesis of new resorcinarenes under alkaline conditions. Helv. Chim. Acta 88, 2722–2730 (2005).; Vicens, J. & Vicens, Q. Origins and emergences of supramolecular chemistry. J. Incl. Phenom. Macrocycl. Chem. 65, 221–235 (2009).; Weinelt, F. & Schneider, H. J. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 56, 5527–5535 (1991).; Sverker Hógberg, A. G. Stereoselective Synthesis and DNMR Study of Two 1,8,15,22-T etraphenyl [I4]metacyclophan-3,5,10,12,17,19,24,26-octolss. J. Am. Chem. Soc. 102, 6046–6050 (1980).; Ma, B. Q. & Coppens, P. A novel scoop-shaped conformation of C methylcalix[4]resorcinarene in a bilayer structure. Chem. Commun. 2, 424–425 (2002).; Abis, L., Dalcanale, E., Du vosel, A. & Sperala, S. Structurally New Macrocycles from the Resorcinol-Aldehyde Condensation. Configurational and Conformational Analyses by Means of Dynamic NMR, NOE, and T1 Experiments. J. Org. Chem. 53, 5475–5479 (1988).; Timmerman W.; Reinhoudt, D. N. P. . V., Timmerman W.; Reinhoudt, D. N. P. . V. & Timmerman W.; Reinhoudt, D. N. P. . V. Resorcinarenes. Tetrahedron 52, 2663–2704 (1996).; Sanabria, E., Esteso, M. A., Pérez-Redondo, A., Vargas, E. & Maldonado, M. Synthesis and characterization of two sulfonated resorcinarenes: A new example of a linear array of sodium centers and macrocycles. Molecules 20, 9915–9928 (2015).; Velásquez-Silva, A., Cortés, B., Rivera-Monroy, Z. J., Pérez-Redondo, A. & Maldonado, M. Crystal structure and dynamic NMR studies of octaacetyl tetra(propyl)calix[4]resorcinarene. J. Mol. Struct. 1137, 380–386 (2017).; Castillo-Aguirre, A., Esteso, M. A. & Maldonado, M. Resorcin[4]arenes: Generalities and Their Role in the Modification and Detection of Amino Acids. Curr. Org. Chem. 24, 2412–2425 (2020).; Fabbri, P. & Messori, M. Surface Modification of Polymers: Chemical, Physical, and Biological Routes. Modification of Polymer Properties (Elsevier Inc., 2017). doi:10.1016/B978-0-323-44353-1.00005-1; Fader, R. et al. Novel organic polymer for UV-enhanced substrate conformal imprint lithography. Microelectron. Eng. 98, 238–241 (2012).; Maldonado, M., Sanabria, E., Batanero, B. & Esteso, M. Á. Apparent molal volume and viscosity values for a new synthesized diazoted resorcin[4]arene in DMSO at several temperatures. J. Mol. Liq. 231, 142–148 (2017).; Sokoließ, T., Menyes, U., Roth, U. & Jira, T. Separation of cis- and trans-isomers of thioxanthene and dibenz[b,e]oxepin derivatives on calixarene- and resorcinarene bonded high-performance liquid chromatography stationary phases. J. Chromatogr. A 948, 309–319 (2002).; Ruderisch, A. et al. Synthesis and characterization of a novel resorcinarene-based stationary phase bearing polar headgroups for use in reversed-phase high performance liquid chromatography. J. Chromatogr. A 1095, 40–49 (2005).; Aghazadeh-Habashi, A., Asghar, W. & Jamali, F. Simultaneous determination of selected eicosanoids by reversed-phase HPLC method using fluorescence detection and application to rat and human plasma, and rat heart and kidney samples. J. Pharm. Biomed. Anal. 110, 12–19 (2015).; Synthesis, A. 3 , 3 0 -Diaryl-BINOL Phosphoric Acids as Enantioselective Extractants of Benzylic Primary Amines. 43, 34–43 (2011).; Lipkowski, J. et al. Host-guest interactions of calix[4]resorcinarenes with benzene derivatives in conditions of reversed-phase high-performance liquid chromatography. Determination of stability constants. J. Phys. Org. Chem. 11, 426–437 (1998).; Zhang, H. et al. Resorcarene derivative used as a new stationary phase for capillary gas chromatography. J. Chromatogr. A 787, 161–169 (1997).; Bachmann, K. et al. Resorcarenes as Pseudostationary Phases with Selectivity for Electrokinetic Chromatography. Anal. Chem. 67, 1722–1726 (1995).; Bazzanella, A. et al. Highly efficient separation of amines by electrokinetic chromatography using resorcarene-octacarboxylic acids as pseudostationary phases. J. Chromatogr. A 792, 143–149 (1997).; Bazzanella, A., Bächmann, K., Milbradt, R., Böhmer, V. & Vogt, W. Discontinuous electrokinetic chromatography of parabens using different substituted resonances as pseudostationary phases. Electrophoresis 20, 92–99 (1999).; Li, N., Harrison, R. G. & Lamb, J. D. Application of resorcinarene derivatives in chemical separations. J. Incl. Phenom. Macrocycl. Chem. 78, 39–60 (2014).; Zwir-Ferenc, A. & Biziuk, M. Solid phase extraction technique - Trends, opportunities and applications. Polish J. Environ. Stud. 15, 677–690 (2006).; Puttreddy, R. et al. Host–guest complexes of conformationally flexible C -hexyl-2- bromoresorcinarene and aromatic N -oxides: solid-state, solution and computational studies . Beilstein J. Org. Chem. 14, 1723–1733 (2018).; Ballester, P. & Biros, S. M. CH-π and π-π Interactions as Contributors to the Guest Binding in Reversible Inclusion and Encapsulation Complexes. Importance Pi Interactions Cryst. Eng. Front. Cryst. Eng. 79–107 (2012). doi:10.1002/9781119945888.ch3; Kazakova, E. K. et al. The complexation properties of the water-soluble tetrasulfonatomethylcalix[4]resorcinarene toward α-aminoacids. J. Incl. Phenom. 43, 65–69 (2002).; Zeisel, S. H. A conceptual framework for studying and investing in precision nutrition. Front. Genet. 10, 1–11 (2019).; Wang, X. F., Zhou, Y., Xu, J. J. & Chen, H. Y. Signal-on electrochemiluminescence biosensors based on CdS-carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv. Funct. Mater. 19, 1444–1450 (2009).; Zhu, B. et al. A highly selective ratiometric visual and red-emitting fluorescent dual channel probe for imaging fluoride anions in living cells. Biosens. Bioelectron. 52, 298–303 (2014).; Pereira, N. M. et al. Electrodeposition of Co and Co composites with carbon nanotubes using choline chloride-based ionic liquids. Surf. Coatings Technol. 324, 451–462 (2017).; Askarpour, M. et al. Beneficial effects of L-carnitine supplementation for weight management in overweight and obese adults: An updated systematic review and dose-response meta-analysis of randomized controlled trials. Pharmacological Research 151, (Elsevier Ltd, 2020).; Jones, L. L., McDonald, D. A. & Borum, P. R. Acylcarnitines: Role in brain. Prog. Lipid Res. 49, 61–75 (2010).; Ribas, G. S., Vargas, C. R. & Wajner, M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 533, 469–476 (2014).; Alves, E. et al. Acetyl-l-carnitine provides effective in vivo neuroprotection over 3,4- methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain. Neuroscience 158, 514–523 (2009).; Calabrese, V., Stella, A. M. G., Calvani, M. & Butterfield, D. A. Acetylcarnitine and cellular stress response: Roles in nutritional redox homeostasis and regulation of longevity genes. J. Nutr. Biochem. 17, 73–88 (2006).; Cahova, M. et al. Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats. Appl. Physiol. Nutr. Metab. 40, 280–291 (2015).; Benjamin Chun-Kit Tong. 乳鼠心肌提取 HHS Public Access. Physiol. Behav. 176, 139–148 (2017).; Suchy, J., Chan, A. & Shea, T. B. Dietary supplementation with a combination of α-lipoic acid, acetyl-l-carnitine, glycerophosphocoline, docosahexaenoic acid, and phosphatidylserine reduces oxidative damage to murine brain and improves cognitive performance. Nutr. Res. 29, 70–74 (2009).; Scafidi, S., Racz, J., Hazelton, J., McKenna, M. C. & Fiskum, G. Neuroprotection by acetyl-L-carnitine after traumatic injury to the immature rat brain. Dev. Neurosci. 32, 480–487 (2011).; Zhang, R. et al. Neuroprotective effects of pre-treament with L-carnitine and Acetyl L-carnitine on ischemic injury in vivo and in vitro. Int. J. Mol. Sci. 13, 2078–2090 (2012); Patel, S. P., Sullivan, P. G., Lyttle, T. S., Magnuson, D. S. K. & Rabchevsky, A. G. Acetyl-l-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery. Neuroscience 210, 296–307 (2012).; Kocsis, K. et al. Acetyl-L-carnitine and oxaloacetate in post-treatment against LTP impairment in a rat ischemia model. An in vitro electrophysiological study. J. Neural Transm. 122, 867–872 (2015).; Hota, S. K., Chaurasia, O. P. & Singh, S. B. Acetyl-L-carnitine mediated neuroprotection during hypoxia is attributed to ERK1/2-Nrf2-regulated mitochondrial biosynthesis. Hippocampus 22, 723–736 (2012).; Barhwal, K., Hota, S. K., Prasad, D., Singh, S. B. & Ilavazhagan, G. Hypoxia induced deactivation of NGF-mediated ERK1/2 signaling in hippocampal cells: Neuroprotection by acetyl-L-carnitine. J. Neurosci. Res. 86, 2705–2721 (2008).; Ishii, T.; Shimpo, Y.; Matsuoka, Y.; Kinoshit, K. 2000.pdf.; Wainwright, M. S., Mannix, M. K., Brown, J. & Stumpf, D. A. L-Carnitine Reduces Brain Injury after Hypoxia-Ischemia in Newborn Rats. Pediatr. Res. 54, 688–695 (2003).; Wainwright, M. S., Kohli, R., Whitington, P. F. & Chace, D. H. Carnitine treatment inhibits increases in cerebral carnitine esters and glutamate detected by mass spectrometry after hypoxia-ischemia in newborn rats. Stroke 37, 524–530 (2006).; Roe, C. R. et al. Metabolic response to carnitine in methylmalonic aciduria. Arch. Dis. Child. 58, 916–920 (1983).; Vieira Neto, E. et al. Analysis of acylcarnitine profiles in umbilical cord blood and during the early neonatal period by electrospray ionization tandem mass spectrometry. Brazilian J. Med. Biol. Res. 45, 546–556 (2012).; Schmidt-Sommerfeld, E. et al. Quantitation of urinary carnitine esters in a patient with medium-chain acyl-coenzyme A dehydrogenase deficiency: Effect of metabolic state and l-carnitine therapy. J. Pediatr. 115, 577–582 (1989).; Rashed, M. S., Ozand, P. T., Bucknall, M. P. & Little, D. Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. Pediatr. Res. 38, 324–331 (1995); Ribas, G. S. et al. Reduction of lipid and protein damage in patients with disorders of propionate metabolism under treatment: a possible protective role of l-carnitine supplementation. Int. J. Dev. Neurosci. 28, 127–132 (2010).; Al-Sharefi, A. & Bilous, R. Reversible weakness and encephalopathy while on long term valproate treatment due to carnitine deficiency. BMJ Case Rep. 2015, 1–3 (2015).; Kim, H. et al. Acquired encephalopathy associated with carnitine deficiency after cefditoren pivoxil administration. Neurol. Sci. 33, 1393–1396 (2012).; Luis Casas-Hinestroza, J. & Maldonado, M. Conformational Aspects of the O acetylation of C-tetra(phenyl)calixpyrogallol[4]arene. Molecules 23, (2018).; Franco, L. S., Salamanca, Y. P., Maldonado, M. & Vargas, E. F. Lina S. Franco, † Yina P. Salamanca, †,‡ Mauricio Maldonado, ‡ and Edgar F. Vargas* ,†. 1042– 1044 (2010).; Plachkova-Petrova, D., Petrova, P., Miloshev, S. & Novakov, C. Optimization of reaction conditions for synthesis C-tetramethylcalix[4] resorcinarene. Bulg. Chem. Commun. 44, 208–215 (2012).; Morikawa, O. et al. Host-guest complexation behavior of resorcinarenes with tetraalkylammonium ions and N-methylpyridinium ions in methanol: The effect of bulky hydrophobic substituents at the extra-annular positions. Phosphorus, Sulfur Silicon Relat. Elem. 181, 2877–2886 (2006).; J.-M. Lehn. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chemie Int. Ed. English 27, 89–112 (1988).; Lehn, J. ‐M. Supramolecular chemistry — Molecular information and the design of supramolecular materials. Makromol. Chemie. Macromol. Symp. 69, 1–17 (1993).; Pastor, A. & Martínez-Viviente, E. NMR spectroscopy in coordination supramolecular chemistry: A unique and powerful methodology. Coord. Chem. Rev. 252, 2314–2345 (2008).; Ongkudon, C. M., Kansil, T. & Wong, C. Challenges and strategies in the preparation of large-volume polymer-based monolithic chromatography adsorbents. J. Sep. Sci. 37, 455–464 (2014).; Eeltink, S. & Svec, F. Recent advances in the control of morphology and surface chemistry of porous polymer-based monolithic stationary phases and their application in CEC. Electrophoresis 28, 137–147 (2007).; Horák, D. et al. The effect of polymeric porogen on the properties of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate). Polymer (Guildf). 34, 3481– 3489 (1993).; Mustafina, A. R., Elistratova, Y. G., Syakaev, V. V., Amirov, R. R. & Konovalova, A. I. Receptor properties of calix[4]resorcinarenes toward tetramethylammonium and choline cations in micellar solutions of sodium dodecyl sulfate. Russ. Chem. Bull. 55, 1419–1424 (2006).; Paquin, F., Rivnay, J., Salleo, A., Stingelin, N. & Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015).; Merhar, M., Podgornik, A., Barut, M., Žigon, M. & Štrancar, A. Methacrylate monoliths prepared from various hydrophobic and hydrophilic monomers - Structural and chromatographic characteristics. J. Sep. Sci. 26, 322–330 (2003).; Ermakova, A. M. et al. Nanoconjugates of a calixresorcinarene derivative with methoxy poly(ethylene glycol) fragments for drug encapsulation. Beilstein J. Nanotechnol. 9, 2057–2070 (2018).; https://repositorio.unal.edu.co/handle/unal/82893Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  6. 6
    رسالة جامعية
  7. 7
    رسالة جامعية

    المؤلفون: Cruz Alvarado, Yadhi Patricia

    المساهمون: Romero Isaza, Carmen María, Termodinámica Clásica

    وصف الملف: xxv, 179 páginas; application/pdf

    العلاقة: RedCol; LaReferencia; P. Ball, “Water is an active matrix of life for cell and molecular biology,” Proc. Natl. Acad. Sci., vol. 114, no. 51, p. 201703781, 2017.; M. F. Chaplin, “A proposal for the structuring of water,” Biophys. Chem., vol. 83, no. 3, pp. 211–221, 2000.; F. Franks, A Matrix of life, 2nd ed. Cambridge: Royal Society of Chemistry, 2000.; F. Franks, Water in Crystalline Hydrates Aqueous Solutions of Simple Nonelectrolytes, Vol 2. New York: Plenum Press, 1973.; B. Bagchi, Water in Biological and Chemical Processes From Structure and Dynamics to Function. Cambridge, United Kingdom: Cambridge University Press, 2013.; J. L. Finney, “Water? What’s so special about it?,” Philos. Trans. R. Soc. B Biol. Sci., vol. 359, no. 1448, pp. 1145–1165, 2004.; D. Eisenberg and W. Kauzmann, The Structure and Properties of Water. New York: Oxford University Press, 2006.; F. Franks, Water: A Comprehensive Treatise” The Physics and Physical Chemistry of Water, Vol 1. New York: Plenum Press, 1972.; A. Ben-Naim, Molecular Theory of Water and Aqueous Solutions. Singapore: World Scientific Publishing Co., 2009.; A. Ben-Naim, Solvation Thermodynamics. New York: Springer Science+ Business Media, 1987.; N. A. Chumaevskii and M. N. Rodnikova, “Some peculiarities of liquid water structure,” J. Mol. Liq., vol. 106, no. 2–3, pp. 167–177, 2003.; J. M. Prausnitz, R. N. Linchtenthaler, and G. D. A. A, “Termodinámica Molecular De Los Equilibrios De Fases.” p. 728, 2000.; W. G. McMillan and J. E. Mayer, “The statistical thermodynamics of multicomponent systems,” J. Chem. Phys., vol. 13, no. 7, pp. 276–305, 1945.; J. J. Savage and R. H. Wood, “Enthalpy of dilution of aqueous mixtures of amides, sugars, urea, ethylene glycol, and pentaerythritol at 25oC: Enthalpy of interaction of the hydrocarbon, amide, and hydroxyl functional groups in dilute aqueous solutions,” J. Solution Chem., vol. 5, no. 10, pp. 733–750, 1976.; R. H. Wood, B. Y. Okamoto, and P. T. Thompson, “Freezing Points of Aqueous Alcohols. Free Energy of Interaction of the CHOH, CH2, CONH and C=C Functional Groups in Dilute Aqueous Solutions,” J. Chem. Soc. Faraday I, vol. 74, pp. 1990–2007, 1978.; R. H. Wood and L. H. Hiltzik, “Enthalpies of dilution of aqueous solutions of formamide, acetamide, propionamide, and N,N-dimethylformamide,” J. Solution Chem., vol. 9, no. 1, pp. 45–57, 1980.; I. R. Tasker and R. H. Wood, “Enthalpies of dilution of aqueous systems containing hexamethylenetetramine and other nonelectrolytes,” J. Solution Chem., vol. 11, no. 10, pp. 729–747, 1982.; I. R. Tasker and R. H. Wood, “Enthalpies of dilution of aqueous solutions of cyclohexanol, inositol, and mannitol,” J. Phys. Chem., vol. 86, no. 20, pp. 4040–4045, 1982.; I. R. Tasker and R. H. Wood, “Enthalpy of dilution of aqueous systems containing S-trioxane and some amides. Analysis of the interaction of saccharides with amides in aqueous media,” J. Solution Chem., vol. 11, no. 7, pp. 481–493, 1982.; S. Andini, G. Castronuovo, V. Elia, and L. Fasano, “Hydrophobic Interactions in the Aqueous Solutions of Alkan-1,2-diols,” J. Chem. Soc. Faraday Trans., vol. 86, no. 21, pp. 3567–3571, 1990.; C. Cascella, G. Castronuovo, V. Elia, R. Sartorio, and S. Wurzburger, “Hydrophobic Interactions of Alkanols,” J. Chem. Soc. Faraday Trans., vol. 86, no. 1, pp. 85–88, 1990.; A. V. Plyasunov and E. L. Shock, “Group contribution values of the infinite dilution thermodynamic functions of hydration for aliphatic noncyclic hydrocarbons, alcohols, and ketones at 298.15 K and 0.1 MPa,” J. Chem. Eng. Data, vol. 46, no. 5, pp. 1016–1019, 2001.; M. Bloemendal and G. Somsen, “Solute-Solute Interactions in Non-aqueous Solvents. Enthalpic Interaction Coefficients of Substituted Acetamides Dissolved in N,N-Dimethylformamide,” J. Solution Chem., vol. 12, no. 2, pp. 83–99, 1983.; M. Bloemendal and G. Somsen, “Enthalpic interaction coefficients of amides dissolved in N,N-dimethylformamide,” J. Solution Chem., vol. 13, no. 4, pp. 281–295, 1984.; P. J. Cheek and T. H. Lilley, “The enthalpies of interaction of some amides with urea in water at 25°C,” J. Chem. Soc. Faraday Trans. I, vol. 84, no. 6, pp. 1927–1940, 1988.; G. Barone and G. Castronuovo, “Excess enthalpies of ternary aqueous solutions of amides and ureas at 298.15 K,” J. Chem. Soc. Faraday Trans., vol. 84, no. 6, pp. 1919–1925, 1988.; T. H. Lilley and R. H. Wood, “Freezing Temperatures of Aqueous Solutions Containing Formamide, Acetamide, Propionamide and N,N-Dimethylformamide. Free Energy of interaction between the CONH and CH2 Groups in the Dilute Aqueous Solutions,” J. Chem. Soc. Faraday I, vol. 76, pp. 901–905, 1980.; W. Marczak, A. Heintz, and J. K. Lehmann, “Calorimetric investigations of hydrogen bonding in binary mixtures containing pyridine and its methyl-substituted derivatives. II. The dilute solutions of methanol and 2-methyl-2-propanol,” J. Chem. Thermodyn., vol. 36, no. 7, pp. 575–582, 2004.; D. J. Hofmann, J. H. Butler, and P. P. Tans, “A new look at atmospheric carbon dioxide,” Atmos. Environ., vol. 43, no. 12, pp. 2084–2086, 2009.; M. L. Kijevčanin, V. D. Spasojević, S. P. Šerbanović, and B. D. Djordjević, “Densities, viscosities, and refractive indices of aqueous alkanolamine solutions as potential carbon dioxide removal reagents,” J. Chem. Eng. Data, vol. 58, no. 1, pp. 84–92, 2013.; H. Hoiland, “Partial Molar volumes, Expansibilities, and Compressibilities for Aqueous Alcohol Solution Between 5 oC and 40 oC.” pp. 857–866, 1980.; C. M. Romero, M. S. Páez, and D. Pérez, “A comparative study of the volumetric properties of dilute aqueous solutions of 1-propanol, 1,2-propanediol, 1,3-propanediol, and 1,2,3-propanetriol at various temperatures,” J. Chem. Thermodyn., vol. 40, no. 12, pp. 1645–1653, 2008.; C. M. Romero, M. S. Páez, J. C. Arteaga, M. A. Romero, and F. Negrete, “Effect of temperature on the volumetric properties of dilute aqueous solutions of 1,2-hexanediol, 1,5-hexanediol, 1,6-hexanediol, and 2,5-hexanediol,” J. Chem. Thermodyn., vol. 39, no. 8, pp. 1101–1109, 2007.; M. Fujisawa, M. Maeda, S. Takagi, and T. Kimura, “Enthalpies of Dilution of Mono-, Di- and Poly-Alcohols in Dilute Aqueous Solutions At 298.15 K,” J. Therm. Anal., vol. 69, pp. 841–848, 2002.; F. Franks, M. Pedley, and D. Reid, “Solute Interactions in Dilute Aqueous Solutions,” J. Chem. Soc. Faraday Trans., vol. 72, pp. 359–367, 1976.; C. M. Romero, M. S. Páez, and I. Lamprecht, “Enthalpies of dilution of aqueous solutions of n-butanol, butanediols, 1,2,4-butanetriol, and 1,2,3,4-butanetetrol at 298.15 K,” Thermochim. Acta, vol. 437, no. 1–2, pp. 26–29, 2005.; M. V. Kaulgud and K. J. Patil, “Volumetric and isentropic compressibility behavior of aqueous amine solutions. I,” J. Phys. Chem., vol. 78, no. 7, pp. 714–717, 1974.; M. V. Kaulgud and K. J. Patil, “Volumetric and isentropic compressibility behavior of aqueous amine solutions. II,” J. Phys. Chem., vol. 80, no. 2, pp. 138–143, 1976.; B. Hawrylak, K. Gracie, R. Palepu, K. Grade, and R. Palepu, “Thermodynamic properties of binary mixtures of butanediols with water,” J. Solution Chem., vol. 27, no. 1, pp. 17–31, 1998.; S. K. Mehta, G. Ram, V. Kumar, and K. K. Bhasin, “Structural and interactional studies of homologous series of α,ω-alkanediols in N,N-dimethylformamide,” J. Chem. Thermodyn., vol. 39, no. 5, pp. 781–790, 2007.; M. Pagé, J.-Y. Huot, and C. Jolicoeur, “A comprehensive thermodynamic investigation of water–ethanolamine mixtures at 10, 25, and 40 °C,” Can. J. Chem., vol. 71, no. 7, pp. 1064–1072, 1993.; H. Touhara, S. Okazaki, F. Okino, H. Tanaka, K. Ikari, and K. Nakanishi, “Thermodynamic properties of aqueous mixtures of hydrophilic compounds 2. Aminoethanol and its methyl derivatives,” J. Chem. Thermodyn., vol. 14, no. 2, pp. 145–156, 1982.; Y. Maham, T. T. Teng, L. G. Hepler, and A. E. Mather, “Volumetric properties of aqueous solutions of monoethanolamine, mono- and dimethylethanolamines at temperatures from 5 to 80 °C I,” Thermochim. Acta, vol. 386, no. 2, pp. 111–118, 2002.; X. Wang, K. Kang, W. Wang, and Y. Tian, “Volumetric properties of binary mixtures of 3-(methylamino)propylamine with water, N -methyldiethanolamine, N, N -dimethylethanolamine, and N, N -diethylethanolamine from (283.15 to 363.15) K,” J. Chem. Eng. Data, vol. 58, no. 12, pp. 3430–3439, 2013.; F. I. Chowdhury, S. Akhtar, M. A. Saleh, M. U. Khandaker, Y. M. Amin, and A. K. Arof, “Volumetric and viscometric properties of aqueous solutions of some monoalkanolamines,” J. Mol. Liq., vol. 223, pp. 299–314, 2016.; Y. Maham, T. T. Teng, L. G. Hepler, and A. E. Mather, “Densities, excess molar volumes, and partial molar volumes for binary mixtures of water with monoethanolamine, diethanolamine, and triethanolamine from 25 to 80°C,” J. Solution Chem., vol. 23, no. 2, pp. 195–205, 1994.; F.-Q. Zhang, H.-P. Li, M. Dai, and J.-P. Zhao, “Volumetric properties of binary mixtures of water with ethanolamine alkyl derivatives,” Thermochim. Acta, vol. 254, pp. 347–357, 1995.; Y. Maham, T. T. Teng, A. E. Mather, and L. G. Hepler, “Volumetric properties of (water + diethanolamine ) systems,” Can. J. Chem., vol. 73, pp. 1514–1519, 1995.; Z. Idris and D. A. Eimer, “Density Measurements of Unloaded and CO2-Loaded 3-Amino-1-propanol Solutions at Temperatures (293.15 to 353.15) K,” J. Chem. Eng. Data, vol. 61, no. 1, pp. 173–181, 2016.; A. Henni, A. V Rayer, S. Kadiwala, and K. Narayanaswamy, “Volumetric Properties, Viscosities, and Refractive Indices for Aqueous 1-Amino-2-Propanol (Monoisopropanolamine (MIPA)) Solutions from (298.15 to 343.15) K,” J. Chem. Eng. Data, vol. 55, no. 12, pp. 5562–5568, 2010.; S. E. Burke, B. Hawrylak, and R. Palepu, “Thermodynamic transfer functions at infinite dilution and clathrate formation of ethanolamines in water,” Thermochim. Acta, vol. 345, no. 2, pp. 101–107, 2000.; A. E. Mather, C. Chan, Y. Maham, and C. Mathonat, “Densities and volumetric properties of the aqueous solutions of 2-amino-2-methyl-1-propanol, n-butyldiethanolamine and n-propylethanolamine at temperatures from 298.15 to 353.15 K,” Fluid Phase Equilib., vol. 198, no. 2, pp. 239–250, 2002.; S. Chen, L. Zhang, Y. Zhang, S. Chen, and J. Chen, “Density and viscosity of monoethylethanolamine + H2O and monoethylethanolamine + diethylethanolamine solutions for CO2capture,” Thermochim. Acta, vol. 642, pp. 52–58, 2016.; S. Cabani and V. Mollica, “Volume Changes in the Proton Ionization of Amines in Water. 2. Amino Alcohols, Amino Ethers, and Diamines,” J. Ph, vol. 81, no. 10, pp. 987–993, 1977.; Y. Maham, A. E. Mather, and L. G. Hepler, “Excess molar enthalpies of (Water + Alkanolamine) systems and some thermodynamic calculations,” J. Chem. Eng. Data, vol. 42, no. 5, pp. 988–992, 1997.; C. Mathonat, Y. Maham, A. E. Mather, and L. G. Hepler, “Excess Molar Enthalpies of (Water + Monoalkanolamine) Mixtures at 298.15 K and 308.15 K,” J. Chem. Eng. Data, vol. 42, no. 5, pp. 993–995, 1997.; Y. Maham, A. E. Mather, and C. Mathonat, “Excess properties of (alkyldiethanolamine+ H2O) mixtures at temperatures from (298.15 to 338.15) K,” J. Chem. Thermodyn., vol. 32, no. 2, pp. 229–236, 2000.; M. Mundhwa and A. Henni, “Molar excess enthalpy (HmE) for various {alkanolamine (1) + water (2)} systems at T = (298.15, 313.15, and 323.15) K,” J. Chem. Thermodyn., vol. 39, no. 11, pp. 1439–1451, 2007.; G. Castronuovo, V. Elia, M. R. Tranchino, and F. Velleca, “The role of preferential interactions between similar domains in determining the behavior of aqueous solutions of aminoalkanols. A microcalorimetric study,” Thermochim. Acta, vol. 313, no. 2, pp. 125–130, 1998.; H. Liang, X. Hu, G. Fang, S. Shao, A. Guo, and Z. Guo, “Pairwise Interaction Enthalpies of Enantiomers of b-Amino Alcohols in DMSO+H2O Mixtures at 298.15K,” Chirality, vol. 24, pp. 374–385, 2012.; E. B. Rinker, D. W. Oelschlager, A. T. Colussi, K. R. Henry, and O. C. Sandall, “Viscosity, Density, and Surface Tension of Binary Mixtures of Water and N-Methyldiethanolamine and Water and Diethanolamine and Tertiary Mixtures of These Amines with Water over the Temperature Range 20‒100°C,” J. Chem. Eng. Data, vol. 39, no. 2, pp. 392–395, 1994.; G. Vázquez, E. Alvarez, R. Rendo, E. Romero, and J. M. Navaza, “Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25°C to 50°C,” J. Chem. Eng. Data, vol. 41, no. 4, pp. 806–808, 1996.; G. Vázquez, E. Alvarez, J. M. Navaza, R. Rendo, and E. Romero, “Surface tension of binary mixtures of water + monoethanolamine and water + 2-amino-2-methyl-1-propanol and tertiary mixtures of these amines with water from 25 °C to 50 °C,” J. Chem. Eng. Data, vol. 42, no. 1, pp. 57–59, 1997.; E. Alvarez, R. Rendo, B. Sanjurjo, M. Sanchéz-Vilas, and J. M. Navaza, “Surface Tension of Binary Mixtures of Water + N -Methyldiethanolamine and Ternary Mixtures of This Amine and Water with Monoethanolamine, Diethanolamine, and 2-Amino-2-methyl-1-propanol from 25 to 50 °C,” J. Chem. Eng. Data, vol. 43, no. 1, pp. 1027–1029, 1998.; J. Aguila-Hernández, A. Trejo, and J. Gracia-Fadrique, “Surface tension of aqueous solutions of alkanolamines: Single amines, blended amines and systems with nonionic surfactants,” Fluid Phase Equilib., vol. 185, no. 1–2, pp. 165–175, 2001.; A. Muhammad, M. I. A. Mutalib, C. D. Wilfred, T. Murugesan, and A. Shafeeq, “Viscosity, refractive index, surface tension, and thermal decomposition of aqueous N-methyldiethanolamine solutions from (298.15 to 338.15) K,” J. Chem. Eng. Data, vol. 53, no. 9, pp. 2226–2229, 2008.; A. Blanco, A. García-Abuín, D. Gómez-Díaz, and J. M. Navaza, “Density, Speed of Sound, Viscosity and Surface Tension of 3-Dimethylamino-1-propylamine + Water, 3-Amino-1-propanol + 3-Dimethylamino-1-propanol, and (3-Amino-1-propanol + 3-Dimethylamino-1-propanol) + Water from T = (293.15 to 323.15) K,” J. Chem. Eng. Data, vol. 62, pp. 2272–2279, 2017.; C. M. Romero and M. S. Paéz, “Surface tension of aqueous solutions of alcohol and polyols at 298.15 K,” Phys. Chem. Liq., vol. 44, no. 1, pp. 61–65, 2006.; G. Vazquez, E. Alvarez, and J. M. Navaza, “Surface Tension of Alcohol + Water from 20 to 50 °C,” J. Chem. Eng. Data, vol. 40, no. 3, pp. 611–614, 1995.; K. A. Connors and J. L. Wright, “Dependence of Surface Tension on Composition of Binary Aqueous-Organic Solutions,” Anal. Chem., vol. 61, no. 3, pp. 194–198, 1989.; N. Shardt and J. A. W. Elliott, “Model for the Surface Tension of Dilute and Concentrated Binary Aqueous Mixtures as a Function of Composition and Temperature,” Langmuir, vol. 33, no. 41, pp. 11077–11085, 2017.; J. Gracia-Fradique, P. Brocos, A. Piñero, and A. Amigo, “Activity coefficients at infinite dilution from surface tension data,” Langmuir, vol. 18, no. 9, pp. 3604–3608, 2002.; J. Gracia-Fadrique, J. Viades-Trejo, and A. Amigo, “Activity coefficients at infinite dilution for surfactants,” Fluid Phase Equilib., vol. 250, no. 1–2, pp. 158–164, 2006.; J. Gracia-Fadrique, P. Brocos, Á. Piñeiro, and A. Amigo, “A proposal for the estimation of binary mixture activity coefficients from surface tension measurements throughout the entire concentration range,” Fluid Phase Equilib., vol. 260, no. 2, pp. 343–353, 2007.; J. Viades-Trejo and J. Gracia-Fadrique, “A new surface equation of state. Hydrophobic-hydrophilic contributions to the activity coefficient,” Fluid Phase Equilib., vol. 264, no. 1–2, pp. 12–17, 2008.; P. Atkins and J. De Paula, Physical Chemistry, Ninth Edit. New York: Oxford University Press, 2010; S. Goldman, “The effect of three-body dispersion forces in liquids on solubilities and related functions,” J. Chem. Phys., vol. 69, no. 8, pp. 3775–3781, 1978.; A. Kreglewski, K. N. Marsh, and K. R. Hall, “A simple relation for the excess functions of nonrandom mixtures,” Fluid Phase Equilib., vol. 21, no. 1–2, pp. 25–37, 1985.; C.-A. Hwang, J. C. Holste, K. R. Hall, and G. A. Mansoori, “A simple relation to predict or to correlate the excess functions of multicomponent mixtures,” Fluid Phase Equilib., vol. 62, no. 3, pp. 173–189, Jan. 1991.; Y. Lu, X. Wang, G. Su, and J. Lu, “Calorimetric and volumetric studies of the interactions of formamide with alkan-1-ol in water at 298.15 K,” Thermochim. Acta, vol. 406, no. 1–2, pp. 233–239, 2003.; Y. Lu, Y. Han, M. Liu, Q. Cheng, X. Lou, and J. Lu, “Enthalpic and volumetric studies of the interactions of propionamide in aqueous carboxylic acid solutions at 298.15 K,” Thermochim. Acta, vol. 416, no. 1–2, pp. 65–70, 2004.; J. E. Desnoyers, G. Perron, L. Von Av, and J. Morel, “Enthalpies of the Urea-tert-ButanoI-Water System at 25oC,” vol. 5, no. 9, pp. 631–632, 1976.; L. Giraldo, J. C. Moreno, and A. Gómez, “Desarrollos Instrumentales en Microcalorimetría de conducción de Calor,” Rev. Colomb. Química, vol. 24, no. I, pp. 57–68, 1995.; I. Wadsö, “Trends in isothermal microcalorimetry,” Chem. Soc. Rev., vol. 26, no. 3, p. 79, 1997.; I. Wadsö, “Isothermal microcalorimetry near ambient temperature: An overview and discussion,” Thermochim. Acta, vol. 294, no. 1, pp. 1–11, 1997.; I. Wadsö, “Needs for standards in isothermal microcalorimetry,” Thermochim. Acta, vol. 347, no. 1–2, pp. 73–77, 2000.; L. D. Hansen, “Toward a standard nomenclature for calorimetry,” Thermochim. Acta, vol. 371, no. 1–2, pp. 19–22, 2001.; L. D. Hansen and R. M. Hart, “The art of calorimetry,” Thermochim. Acta, vol. 417, no. 2, pp. 257–273, 2004.; B. N. Taylor and C. E. Kuyatt, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” NIST Technical Note. U.S. Government Printing Office, Washington, p. 20, 1994.; C. M. Romero, Y. P. Cruz, and S. Perez-Casas, “Enthalpies of dilution of amino alcohols in aqueous solutions at 298.15 K,” Thermochim. Acta, vol. 684, no. February 2019, p. 178490, 2020.; G. Borghesani, R. Pedriali, F. Pulidori, and I. Scaroni, “Solute-solute-solvent interactions in dilute aqueous solutions. Microcalorimetric study of isomeric butanediols,” J. Solution Chem., vol. 15, no. 5, pp. 397–408, 1986.; W. Dimmling and E. Lange, “Verdunnungs- und Losungswarmen yon n-Propylalkohol und iso-Propylalkohol in Wasser bei 25 °C,” Zeitschrift fur Elekrochemie, vol. 55, no. 4, pp. 322–327, 1951.; H. Liang, X. Hu, G. Fang, S. Shao, A. Guo, and Z. Guo, “Pairwise interaction enthalpies of enantiomers of β-amino alcohols in DMSO + H2O mixtures at 298.15 K,” Chirality, vol. 24, no. 5, pp. 374–385, 2012.; I. R. Tasker and R. H. Wood, “Enthalpies of Dilution of Aqueous Solutions of Cyclohexanol, Inositol, and Mannitol,” J. Phys. Chem., vol. 86, pp. 4040–4045, 1982.; G. Borghesani, R. Pedriali, and F. Pulidori, “Solute-solute-solvent interactions in dilute aqueous solutions of aliphatic diols. Excess enthalpies and gibbs free energies,” J. Solution Chem., vol. 18, no. 3, pp. 289–300, 1989.; M. Fujisawa, M. Maeda, S. Takagi, and T. Kimura, “Enthalpies of dilution of mono-, di- and poly-alcohols in dilute aqueous solutions at 298.15 K,” J. Therm. Anal. Calorim., vol. 69, no. 3, pp. 841–848, 2002.; G. Perron and J. E. Desnoyers, “Heat capacities and volumes of interaction between mixtures of alcohols in water at 298. 5 K,” J. Chem. Thermodyn., vol. 13, pp. 1105–1121, 1981.; F. Franks and M. Pedley, “Solute Interactions in Dilute Aqueous Solutions,” J. Chem. Soc. Faraday Trans. I, vol. 79, pp. 2249–2260, 1983.; W. Dimmling and E. Lange, “Heats of dilution and solution of n-propyl alcohol and isopropyl alcohol in water at 25%7CC,” Z. Elektrochem, vol. 55, p. 322, 1951.; R. B. Cassel and R. H. Wood, “Heat of mixing aqueous nonelectrolytes at constant molality. Sucrose, urea, and glycine,” J. Phys. Chem., vol. 78, no. 24, pp. 2465–2469, 1974.; L. G. Soldi, Y. Marcus, M. J. Blandamer, and P. M. Cullis, “Titration calorimetric determination of the pairwise interaction parameters of glycerol, D-threitol, mannitol, and D-glucitol in dilute aqueous solutions,” J. Solution Chem., vol. 24, no. 3, pp. 201–209, 1995.; E. Lange and K. Möhring, “Integrale Verdünnungswärmen einiger Nichtelektrolyte in Wasser und Octamethyltetrasiloxan bei kleinen Konzentrationen,” Z. Elektrochem, vol. 57, no. 8, pp. 660–662, 1953.; J. Sedlbauer and P. Jakubu, “Application of group additivity approach to polar and polyfunctional aqueous solutes,” Ind. Eng. Chem. Res., vol. 47, no. 15, pp. 5048–5062, 2008.; S. Cabani, P. Gianni, V. Mollica, and L. Lepori, “Group Contributions to the Thermodynamic Properties of Non-Ionic Organic Solutes in Dilute Aqueous Solution,” J. Solution Chem., vol. 10, no. 8, pp. 563–595, 1981.; S. Cabani, V. Mollica, L. Lepori, and S. T. Lobo, “Volume changes in the proton ionization of amines in water. 2. Amino alcohols, amino ethers, and diamines,” J. Phys. Chem., vol. 81, no. 10, pp. 987–993, 1977.; H. Wood, Robert and L. H. Hiltzik, “Enthalpies of dilution of aqueous solutions of formamide, acetamide, propionamide, and N,N-dimethylformamide,” J. Solution Chem., vol. 9, no. 1, pp. 45–57, 1980.; C. M. Romero, I. Lamprecht, and M. E. Gonzalez, “Enthalpy of dilution of aliphatic amides in aqueous solutions at temperatures between 293.15K and 308.15K,” Thermochim. Acta, vol. 488, pp. 49–53, 2009.; I. M. Klotz, Chemical Thermodynamics - Basic Theory and Methods. New York: W. A. Benjamin Inc., 1964; K. S. Pitzer, Thermodynamics, 3rd ed. Singapore: MacGraw Hill International Editions, 1995.; J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, “The Gibbs-Duhem Equation,” Molecular Thermodynamics of Fluid-Phase Equilibria. 1998.; S. Cabani, G. Conti, and E. Matteoli, “Partial molal expansibilities of organic compounds in aqueous solution. I. Alcohols and ethers,” J. Solution Chem., vol. 5, no. 11, pp. 751–763, 1976.; H. Høiland, “Partial molal volumes, expansibilities, and compressibilities for aqueous alcohol solutions between 5°C and 40°C,” J. Solution Chem., vol. 9, no. 11, pp. 857–866, 1980.; J. W. P. Malcolm, Ultrasonic Techniques for Fluids Characterization, Department. Leeds, United Kingdom: Academic Press, 1997.; A. Burakowski and J. Gliński, “Hydration numbers of non-electrolytes - Application of the acoustic method of Pasynski,” Chem. Phys., vol. 332, no. 2–3, pp. 336–340, 2007.; J. Gliński and A. Burakowski, “New interpretation of the concentration dependence of the compressibility of aqueous solutions of nonelectrolytes,” Int. J. Thermophys., vol. 32, no. 4, pp. 786–794, 2011.; J. Gliński and A. Burakowski, “Hydration numbers of nonelectrolytes from acoustic methods,” Chem. Rev., vol. 112, no. 4, pp. 2059–2081, 2012.; A. Burakowski and J. Gliński, “Additivity of adiabatic compressibility with the size and geometry of the solute molecule,” J. Mol. Liq., vol. 137, no. 1–3, pp. 25–30, 2008.; Y. Kano, M. Hasumoto, Y. Kayukawa, and K. Watanabe, “Rapid measurements of thermodynamic properties for alternative refrigerants with vibrating-tube densimeter,” Int. J. Thermophys., vol. 26, no. 1, pp. 63–81, 2005.; A. Henni, J. J. Hromek, P. Tontiwachwuthikul, and A. Chakma, “Volumetric Properties and Viscosities for Aqueous AMP Solutions from 25 °C to 70 °C,” J. Chem. Eng. Data, vol. 48, no. 3, pp. 551–556, 2003.; A. Henni, J. J. Hromek, P. Tontiwachwuthikul, and A. Chakma, “Volumetric properties and viscosities for aqueous diisopropanolamine solutions from 25 oC to 70 oC,” J. Chem. Eng. Data, vol. 48, no. 4, pp. 1062–1067, 2003.; A. Muhammad, M. I. A. Mutalib, T. Murugesan, and A. Shafeeq, “Density and Excess Properties of Aqueous N-Methyldiethanolamine Solutions from (298.15 to 338.15) K,” J. Chem. Eng. Data, vol. 53, no. 9, pp. 2217–2221, 2008.; E. Álvarez, F. Cerdeira, D. Gómez-Diaz, and J. M. Navaza, “Density, Speed of Sound, Isentropic Compressibility, and Excess Volume of Binary Mixtures of 1-Amino-2-propanol or 3-Amino-1-propanol with 2-Amino-2-methyl-1-propanol, Diethanolamine, or Triethanolamine from (293.15 to 323.15) K,” J. Chem. Eng. Data, vol. 55, pp. 2567–2575, 2010.; F. Kermanpour and H. Z. Niakan, “Experimental excess molar properties of binary mixtures of (3-amino-1-propanol + isobutanol, 2-propanol) at T = (293.15 to 333.15) K and modelling the excess molar volume by Prigogine-Flory-Patterson theory,” J. Chem. Thermodyn., vol. 54, pp. 10–19, 2012.; D. Gómez-Díaz, M. D. La Rubia, A. B. López, J. M. Navaza, R. Pacheco, and S. Sánchez, “Density, speed of sound, refractive index, and viscosity of 1-amino-2-propanol {or Bis(2-hydroxypropyl)amine} + triethanolamine + water from T = (288.15 to 333.15) K,” J. Chem. Eng. Data, vol. 57, no. 4, pp. 1104–1111, 2012.; V. D. Spasojevic, B. D. Djordjevic, S. P. Šerbanovic, I. R. Radovic, and M. Lj Kijevčanin, “Densities, refractive indices, viscosities, and spectroscopic study of 1-amino-2-propanol + 1-butanol and + 2-butanol solutions at (288.15 to 333.15) K,” J. Chem. Eng. Data, vol. 59, no. 6, pp. 1817–1829, 2014.; Y. P. Cruz, M. A. Esteso, and C. M. Romero, “Effect of temperature on the partial molar volumes and the partial molar compressibilities of amino alcohols in aqueous solution,” J. Chem. Thermodyn., vol. 160, p. 106521, 2021.; E. Bulemela and P. R. Tremaine, “Standard Partial Molar Volumes of Some Aqueous Alkanolamines and Alkoxyamines at Temperatures up to 325 °C: Functional Group Additivity in Polar Organic Solutes under Hydrothermal Conditions,” J. Phys. Chem. B, vol. 112, no. 18, pp. 5626–5645, 2008.; C. M. Romero and Y. P. Cruz, “Volumen Molar Parcial de Algunas Alcanolaminas en agua a 298,15 K,” Rev. Colomb. Química, vol. 40, no. 3, pp. 381–390, 2011.; S. Mokraoui, A. Valtz, C. Coquelet, and D. Richon, “Volumetric properties of the isopropanolamine-water mixture at atmospheric pressure from 283.15 to 353.15 K,” Thermochim. Acta, vol. 440, no. 2, pp. 122–128, 2006.; S. Cabani, G. Conti, and L. Lepori, “Volumetric properties of aqueous solutions of organic compounds. III. Aliphatic secondary alcohols, cyclic alcohols, primary, secondary, and tertiary amines,” J. Phys. Chem., vol. 78, no. 10, pp. 1030–1034, 1974.; L. Lepori and P. Gianni, “Partial Molar Volumes of Ionic and Nonionic Organic Solutes in Water : A Simple Additivity Scheme Based on the Intrinsic Volume Approach,” J. Solution Chem., vol. 29, no. 5, pp. 405–447, 2000.; J. Gliński and A. Burakowski, “Is the hydration number of a non-electrolyte additive with length and constituents of the solute molecule?,” Eur. Phys. J. Spec. Top., vol. 154, no. 1, pp. 275–279, 2008.; C. M. Romero and M. S. Páez, “Volumetric properties of aqueous binary mixtures of 1-butanol, butanediols, 1,2,4-butanetriol and butanetetrol at 298.15 K,” J. Solution Chem., vol. 36, no. 2, pp. 237–245, 2007.; P. Hynčica, L. Hnědkovský, and I. Cibulka, “Partial molar volumes of organic solutes in water. XII. Methanol(aq), ethanol(aq), 1-propanol(aq), and 2-propanol(aq) at T= (298 to 573) K and at pressures up to 30 MPa,” J. Chem. Thermodyn., vol. 36, no. 12, pp. 1095–1103, 2004.; J. T. Edward, P. G. Farrell, and F. G. Shahidi, “Partial Molar Volumes of Organic Compounds in Water Part 1. Ethers, Ketones, Esters and Alcohols,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 73, pp. 705–714, 1977.; F. G. Shahidi, P. G. Farrell, and J. T. Edward, “Partial Molar Volumes of Organic Compounds in Water Part 2. Amines and Amides,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 73, pp. 715–721, 1977.; S. Cabani, E. Matteoli, and M. R. Tinè, “Compressibility Changes in the Reaction of Proton Addition to some Organic Aliphatic Nitrogen Compounds in Aqueous Solution,” Z. Phys. Chem. Neue Folge, vol. 137, pp. 23–30, 1983.; A. Da̧browski, “Adsorption - From theory to practice,” Adv. Colloid Interface Sci., vol. 93, no. 1–3, pp. 135–224, 2001.; H. J. Butt, K. Graf, and M. Kappl, The Physics and Chemistry of Interfaces, vol. 53, no. 9. Weinheim: WILEY-VCH Verlag GmbH & Co., 2003.; G. G. Láng, “Basic interfacial thermodynamics and related mathematical background,” ChemTexts, vol. 1, no. 4, pp. 1–17, 2015.; H. Y. Erbil, Surface Chemistry of Solid and Liquid Interfaces. Oxford: Blackwell Publishing, 2006.; M. A. Alanis-García and J. Gracia-Fadrique, “Ecuación de estado superficial de Volmer líquidos simples y tensoactivos,” Educ. Química, vol. 29, no. 2, p. 36, 2018.; A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th ed. New York: John Wiley & Sons, 1997.; H. Y. Erbil, Surface Chemistry Of Solid and Liquid Interfaces, vol. 9, no. 4. Oxford: Blackwell Publishing Ltd, 2006.; F. D. Sandoval-Ibarra, J. L. López-Cervantes, and J. Gracia-Fadrique, “Ecuación de Langmuir en líquidos simples y tensoactivos,” Educ. Quim., vol. 26, no. 4, pp. 307–313, 2015.; B. Hawrylak, S. Andrecyk, C.-E. Gabriel, K. Gracie, and R. Palepu, “Viscosity, Surface Tension, and Refractive Index Measurements of Mixtures of Isomeric Butanediols with Water,” J. Solut. Chem., vol. 27, no. 9, pp. 827–841, 1998.; Y. Maham and A. E. Mather, “Surface thermodynamics of aqueous solutions of alkylethanolamines,” Fluid Phase Equilib., vol. 182, no. 1–2, pp. 325–336, 2001.; C. M. Romero, M. S. Páez, J. A. Miranda, D. J. Hernández, and L. E. Oviedo, “Effect of temperature on the surface tension of diluted aqueous solutions of 1,2-hexanediol, 1,5-hexanediol, 1,6-hexanediol and 2,5-hexanediol,” Fluid Phase Equilib., vol. 258, no. 1, pp. 67–72, 2007.; A. Blanco, A. García-Abuín, D. Gómez-Díaz, and J. M. Navaza, “Surface tension and refractive index of benzylamine and 1,2-diaminopropane aqueous solutions from T = (283.15 to 323.15) K,” J. Chem. Eng. Data, vol. 57, no. 9, pp. 2437–2441, 2012.; H. Everett, D, “The Thermodynamics of Adsorption. Part II. Thermodynamics of Monolayers on Solids,” Trans. Faraday Soc., vol. 46, pp. 453–957, 1950.; D. Khossravi and K. A. Connors, “Solvent effects on chemical processes. 3. Surface tension of binary aqueous organic solvents,” J. Solution Chem., vol. 22, no. 4, pp. 321–330, 1993.; M. C. Wilkinson, “Extended use of, and Comments on, the Drop-Weight (drop-volume) Technique for the Determination of Surface and Interfacial Tensions,” J. Colloid Interface Sci., vol. 40, no. 1, pp. 14–26, 1972.; LAUDA, “Drop Volume Tensiometer TVT1.” Dr Wobser Gmbh and Co., Konigshofen, Germany, 1993.; C. Wohlfarth and B. Wohlfarth, Surface tension of pure liquids and binary liquid mixtures. In Landolt-Börnstein Nomerical Data and Functional Relationships in Science and Technology, vol. 16, no. IV. Osnabrück, Germany: Springer, 1997.; E. Álvarez, Á. Cancela, R. Maceiras, J. M. Navaza, and R. Táboas, “Surface tension of aqueous binary mixtures of 1-amino-2-propanol and 3-amino-1-propanol, and aqueous ternary mixtures of these amines with diethanolamine, triethanolamine, and 2-amino-2-methyl-1-propanol from (298.15 to 323.15) K,” J. Chem. Eng. Data, vol. 48, no. 1, pp. 32–35, 2003.; J. Aguila-Hernández, R. Gómez-Quintana, F. Murrieta-Guevara, A. Romero-Martínez, and A. Trejo, “Liquid density of aqueous blended alkanolamines and N-methylpyrrolidone as a function of concentration and temperature,” J. Chem. Eng. Data, vol. 46, no. 4, pp. 861–867, 2001.; E. Alvarez, D. Gómez-Díaz, M. Dolores La Rubia, and J. M. Navaza, “Surface tension of binary mixtures of N-methyldiethanolamine and triethanolamine with ethanol,” J. Chem. Eng. Data, vol. 53, no. 3, pp. 874–876, 2008.; C. Bermúdez-Salguero, A. Amigo, and J. Gracia-Fadrique, “Activity coefficients from Gibbs adsorption equation,” Fluid Phase Equilib., vol. 330, pp. 17–23, 2012.; J. J. Jasper, “The Surface Tension of Pure Liquid Compounds,” J. Phys. Chem. Ref. Data, vol. 1, no. 4, pp. 841–1010, 1972.; D. C. Harris, Quantitative Chemical Analysis, 8th ed. New York: W. H. Freeman and Company, 2010.; National Institute of Standards and Technology, “NIST.” [Online]. Available: https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=H&all=allTest. [Accessed: 10-Mar-2014].; https://repositorio.unal.edu.co/handle/unal/82113Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  8. 8
    رسالة جامعية

    المؤلفون: Casas Hinestroza, José Luis

    المساهمون: Maldonado Villamil, Mauricio, Universidad Nacional de Colombia, Aplicaciones Analíticas de Compuesto Orgánicos

    وصف الملف: application/pdf

    العلاقة: Steed, J. W.; Atwood, J. L.; Gale, P. A. Definition and Emergence of Supramolecular ChemistryAdapted in Part from Supramolecular Chemistry , J. W. Steed and J. L. Atwood, Wiley: Chichester, 2nd Ed., 2009. In Supramolecular Chemistry; John Wiley & Sons, Ltd: Chichester, UK, 2012; Lehn, J.-M. Towards Complex Matter: Supramolecular Chemistry and Self-Organization. Eur. Rev. 2009, 17 (2), 263–280.; Strekowski, L.; Wilson, B. Noncovalent Interactions with DNA: An Overview. Mutat. Res. Mol. Mech. Mutagen. 2007, 623 (1–2), 3–13.; Harada, A.; Takashima, Y.; Yamaguchi, H. Cyclodextrin-Based Supramolecular Polymers. Chemical Society Reviews. 2009, pp 875–882.; Liu, Z.; Nalluri, S. K. M.; Fraser Stoddart, J. Surveying Macrocyclic Chemistry: From Flexible Crown Ethers to Rigid Cyclophanes. Chem. Soc. Rev. 2017, 46 (9), 2459–2478.; Kumari, H.; Deakyne, C. A.; Atwood, J. L. Solution Structures of Nanoassemblies Based on Pyrogallol[4]Arenes. Acc. Chem. Res. 2014, 47 (10), 3080–3088.; Jordan, J. H.; Gibb, B. C. Molecular Containers Assembled through the Hydrophobic Effect. Chem. Soc. Rev. 2015, 44 (2), 547–585; Beyeh, N. K.; Rissanen, K. Dimeric Resorcin[4]Arene Capsules in the Solid State. Isr. J. Chem. 2011, 51 (7), 769–780.; Zhang, Q.; Tiefenbacher, K. Hexameric Resorcinarene Capsule Is a Brønsted Acid: Investigation and Application to Synthesis and Catalysis. J. Am. Chem. Soc. 2013, 135 (43), 16213–16219.; Zhang, C.; Wang, F.; Patil, R. S.; Barnes, C. L.; Li, T.; Atwood, J. L. Hierarchical Self-Assembly of Supramolecular Coordination Polymers Using Giant Metal-Organic Nanocapsules as Building Blocks. Chem. - A Eur. J. 2018, 24 (54), 14335–14340.; Cohen, Y.; Slovak, S.; Avram, L. Hydrogen Bond Hexameric Capsules: Structures, Host-Guest Interactions, Guest Affinities, and Catalysis. In Calixarenes and Beyond; Neri, P., Sessler, J. L., Wang, M.-X., Eds.; Springer International Publishing: Cham, 2016; pp 811–842.; Sherman, J. C.; Knobler, C. B.; Cram, J. Syntheses and Properties of Soluble Carceplexes. J. Am. Chem. Soc. 1991, 2204 (4), 2194–2204.; Tanaka, Y.; Miyachi, M.; Kobuke, Y. Selective Vesicle Formation from Calixarenes by Self-Assembly. Angew. Chemie - Int. Ed. 1999, 38 (4), 504–506.; Yan, C.; Chen, W.; Chen, J.; Jiang, T.; Yao, Y. Microwave Irradiation Assisted Synthesis , Alkylation Reaction , and Configuration Analysis of Aryl Pyrogallol [ 4 ] Arenes. 2007, 63, 9614–9620; Funck, M.; Guest, D. P.; Cave, G. W. V. Microwave-Assisted Synthesis of Resorcin[4]Arene and Pyrogallol[4]Arene Macrocycles. Tetrahedron Lett. 2010, 51, 6399–6402.; Yasmin, L.; Coyle, T.; Stubbs, K. A.; Raston, C. L. Stereospecific Synthesis of Resorcin[4]Arenes and Pyrogallol[4]Arenes in Dynamic Thin Films. Chem. Commun. 2013, 49 (93), 10932–10934.; Jain, V. K.; Kanaiya, P. H. Chemistry of Calix[4]Resorcinarenes. Russ. Chem. Rev. 2011, 80 (1), 75–102.; Szumna, A.; Wierzbicki, M.; Iwanek, W.; Stefa, K. Solvent-Free Synthesis and Structure of 2-Naphthol Derivatives of Resorcinarenes. 2015, 71, 2222–2225.; Thomas, H. M.; Kumari, H.; Maddalena, J.; Mayhan, C. M.; Ellis, L. T.; Adams, J. E.; Deakyne, C. A. Conformational Preference and Dynamics of Pyrogallol[4]Arene: Stability, Interconversion, and Solvent Influence. Supramol. Chem. 2018, 30 (5–6), 520–532.; Manzano, S.; Zambrano, C. H.; Mendez, M. A.; Dueno, E. E.; Cazar, R. A.; Torres, F. J. A Theoretical Study of the Conformational Preference of Alkyl- and Aryl-Substituted Pyrogallol[4]Arenes and Evidence of the Accumulation of Negative Electrostatic Potential within the Cavity of Their Rccc Conformers. Mol. Simul. 2014, 40 (4), 327–334.; Gutsche, C. D.; Dhawan, B.; Levine, J. A.; Hyun No, K.; Bauer, L. J. Calixarenes 9. Tetrahedron 1983, 39 (3), 409–426.; Weinelt, F.; Schneider, H. J. Host-Guest Chemistry. 27. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 1991, 56 (19), 5527–5535.; Mann, G.; Weinelt, F.; Hauptmann, S. Influence of Aromatic Substituents on the Configuration and Conformation of Calix[4]Areneoctols. J. Phys. Org. Chem. 1989, 2 (7), 531–539.; Gerkensmeier, T.; Agena, C.; Iwanek, W.; Fröhlich, R.; Kotila, S.; Näther, C.; Mattay, J. Synthesis and Structural Studies of 5, 11, 17, 23-Tetrahydroxyresorc[4]Arenes. Zeitschrift für Naturforsch. B 2001, 56 (10), 1063–1073.; Schiel, C.; Hembury, G. A.; Borovkov, V. V.; Klaes, M.; Agena, C.; Wada, T.; Grimme, S.; Inoue, Y.; Mattay, J. New Insights into the Geometry of Resorc[4]Arenes: Solvent-Mediated Supramolecular Conformational and Chiroptical Control. J. Org. Chem. 2006, 71 (3), 976–982.; Patil, R. S.; Drachnik, A. M.; Kumari, H.; Barnes, C. L.; Deakyne, C. A.; Atwood, J. L. Solvent-Induced Manipulation of Supramolecular Organic Frameworks. Cryst. Growth Des. 2015, 15 (6), 2781–2786.; Alshahateet, S. F.; Kooli, F.; Messali, M.; Judeh, Z. M. A.; ElDouhaibi, A. S. Synthesis and Supramolecularity of C -Phenylcalix[4] Pyrogallolarenes: Temperature Effect on the Formation of Different Isomers. Mol. Cryst. Liq. Cryst. 2007, 474 (1), 89–110.; Casas-Hinestroza, J.; Maldonado, M. Conformational Aspects of the O-Acetylation of C-Tetra(Phenyl)Calixpyrogallol[4]Arene. Molecules 2018, 23 (5), 1225.; Velásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z. J.; Pérez-Redondo, A.; Maldonado, M. Crystal Structure and Dynamic NMR Studies of Octaacetyl-Tetra(Propyl)Calix[4]Resorcinarene. J. Mol. Struct. 2017, 1137, 380–386.; Kulikov, O. V; Negin, S.; Rath, N. P.; Gokel, G. W. Morphologies of Branched-Chain Pyrogallol[4]Arenes in the Solid State. Supramol. Chem. 2014, 26 (7–8), 506–516.; Dalgarno, S. J.; Power, N. P.; Antesberger, J.; Mckinlay, R. M.; Atwood, J. L. Synthesis and Structural Characterisation of Lower Rim Halogenated Pyrogallol [ 4 ] Arenes : Bi-Layers and Hexameric Nano-Capsules. Chem. Commun. 2006, 3803–3805.; Gibb, B. C.; Chapman, R. G.; Sherman, J. C. Synthesis of Hydroxyl-Footed Cavitands. J. Org. Chem. 1996, 61 (4), 1505–1509.; Kobayashi, K.; Asakawa, Y.; Kato, Y.; Aoyama, Y. Complexation of Hydrophobic Sugars and Nucleosides in Water with Tetrasulfonate Derivatives of Resorcinol Cyclic Tetramer Having a Polyhydroxy Aromatic Cavity: Importance of Guest-Host CH-.Pi. Interaction. J. Am. Chem. Soc. 1992, 114 (26), 10307–10313.; Barrett, E. S.; Dale, T. J.; Rebek, J. Synthesis and Assembly of Monofunctionalized Pyrogallolarene Capsules Monitored by Fluorescence Resonance Energy Transfer. Chem. Commun. 2007, 0 (41), 4224.; Fujimoto, T.; Yanagihara, R.; Kobayashi, K.; Aoyama, Y. C–H··· π Hydrogen Bonding between Electron-Rich Benzene Rings and Polarized C–H Bonds: Selectivity in the Complexation of Highly Hydrophilic Guest Molecules with Calix[4]Resorcarene Hosts in Water. Bull. Chem. Soc. Jpn. 1995, 68, 2113–2124.; Barrett, E. S.; Dale, T. J.; Rebek, J. Assembly and Exchange of Resorcinarene Capsules Monitored by Fluorescence Resonance Energy Transfer. J. Am. Chem. Soc. 2007, 129 (13), 3818–3819.; Fairfull-Smith (née Elson), K.; Redon, P. M. J.; Haycock, J. W.; Williams, N. H. Monofunctionalised Resorcinarenes. Tetrahedron Lett. 2007, 48 (8), 1317–1319.; Bowley, N. D.; Funck, M.; Laventine, D. M.; Dalgarno, S. J.; Cave, G. W. V; Bowley, N. D.; Funck, M.; Laventine, D. M.; Dalgarno, S. J. Pyridinium Encapsulation within a Novel Cyano- Footed Pyrogallol [ 4 ] Arene Nanocapsule. Supramol. Chem. 2014, 0278 (March 2017), 1–5.; Schröder, T.; Geisler, T.; Walhorn, V.; Schnatwinkel, B.; Anselmetti, D.; Mattay, J. Single-Molecule Force Spectroscopy of Supramolecular Heterodimeric Capsules. Phys. Chem. Chem. Phys. 2010, 12 (36), 10981.; Rafai Far, A.; Lag Cho, Y.; Rang, A.; Rudkevich, D. M.; Rebek, J. Polymer-Bound Self-Folding Cavitands. Tetrahedron 2002, 58 (4), 741–755.; Saitoh, M.; Fukaminato, T.; Irie, M. Photochromism of a Diarylethene Derivative in Aqueous Solution Capping with a Water-Soluble Nano-Cavitand. J. Photochem. Photobiol. A Chem. 2009, 207 (1), 28–31.; Saito, S.; Rudkevich, D. M.; Rebek, J. Lower Rim Functionalized Resorcinarenes: Useful Modules for Supramolecular Chemistry. Org. Lett. 1999, 1 (8), 1241–1244.; Naumann, C.; Román, E.; Peinador, C.; Ren, T.; Patrick, B. O.; Kaifer, A. E.; Sherman, J. C. Expanding Cavitand Chemistry: The Preparation and Characterization of [n]Cavitands Withn≥4. Chemistry (Easton). 2001, 7 (8), 1637–1645.; Åhman, A.; Luostarinen, M.; Schalley, C. A.; Nissinen, M.; Rissanen, K. Derivatisation of Pyrogallarenes. European J. Org. Chem. 2005, 2005 (13), 2793–2801.; Podyachev, S. N.; Syakaev, V. V.; Sudakova, S. N.; Shagidullin, R. R.; Osyanina, D. V.; Avvakumova, L. V.; Buzykin, B. I.; Latypov, S. K.; Bauer, I.; Habicher, W. D.; et al. Synthesis of New Calix[4]Arenes Functionalizated by Acetylhydrazide Groups. J. Incl. Phenom. Macrocycl. Chem. 2007, 58 (1–2), 55–61.; Pashirova, T. N.; Leonova, M. V.; Podyachev, S. N.; Sudakova, S. N.; Zakharova, L. Y.; Kudryavtseva, L. A.; Konovalov, A. I. Effect of Structural Preorganization on the Reactivity of Carbazoylmethyl Derivatives of Pyrogallol and Calix[4]Pyrogallol. Russ. Chem. Bull. 2007, 56 (12), 2394–2399.; Luostarinen, M.; Åhman, A.; Nissinen, M.; Rissanen, K. Ethyl Pyrogall[6]Arene and Pyrogall[4]Arene: Synthesis, Structural Analysis and Derivatization. Supramol. Chem. 2004, 16 (7), 505–512.; Han, J.; Song, X.; Liu, L.; Yan, C. Synthesis, Crystal Structure and Configuration of Acetylated Aryl Pyrogallol[4]Arenes. J. Incl. Phenom. Macrocycl. Chem. 2007, 59 (3–4), 257–263.; Krause, T.; Gruner, M.; Kuckling, D.; Habicher, W. D. Novel Starshaped Initiators for the Controlled Radical Polymerization Based on Resorcin[4]- and Pyrogallol[4]Arenes. Tetrahedron Lett. 2004, 45 (52), 9635–9639.; Jordan, J. H.; Gibb, B. C. Water-Soluble Cavitands ☆. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; Vol. 1, pp 387–404.; Tero, T.-R.; Nissinen, M. Resorcinarene Crowns ☆. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; pp 375–386.; Salorinne, K.; Nissinen, M. Calixcrowns: Synthesis and Properties. J. Incl. Phenom. Macrocycl. Chem. 2008, 61 (1–2), 11–27.; Biedermann, F.; Schneider, H. J. Experimental Binding Energies in Supramolecular Complexes. Chem. Rev. 2016, 116 (9), 5216–5300.; Mahadevi, A. S.; Sastry, G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116 (5), 2775–2825.; Salonen, L. M.; Ellermann, M.; Diederich, F. Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angew. Chemie - Int. Ed. 2011, 50 (21), 4808–4842.; Casas-Hinestroza, J. L.; Bueno, M.; Ibáñez, E.; Cifuentes, A. Recent Advances in Mass Spectrometry Studies of Non-Covalent Complexes of Macrocycles - A Review. Anal. Chim. Acta 2019.; Waters, M. L. Aromatic Interactions in Model Systems. Curr. Opin. Chem. Biol. 2002, 6 (6), 736–741.; Waters, M. L. Aromatic Interactions in Peptides: Impact on Structure and Function. Biopolymers 2004, 76 (5), 435–445.; Przybylski, M.; Glocker, M. O. Electrospray Mass Spectrometry of Biomacromolecular Complexes with Noncovalent Interactions—New Analytical Perspectives for Supramolecular Chemistry and Molecular Recognition Processes. Angew. Chemie Int. Ed. English 1996, 35 (8), 806–826.; Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 1–40.; Venter, A.; Nefliu, M.; Graham Cooks, R. Ambient Desorption Ionization Mass Spectrometry. TrAC Trends Anal. Chem. 2008, 27 (4), 284–290.; Chen, F.; Mädler, S.; Weidmann, S.; Zenobi, R. MALDI-MS Detection of Noncovalent Interactions of Single Stranded DNA with Escherichia Coli Single-Stranded DNA-Binding Protein. J. Mass Spectrom. 2012, 47 (5), 560–566.; Downard, K. M. Indirect Study of Non-Covalent Protein Complexes by MALDI Mass Spectrometry: Origins, Advantages, and Applications of the “Intensity-Fading” Approach. Mass Spectrom. Rev. 2016, 35 (5), 559–573.; Tong, W.; Wang, G. How Can Native Mass Spectrometry Contribute to Characterization of Biomacromolecular Higher-Order Structure and Interactions? Methods 2018, 144 (April), 3–13.; Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216 (1), 1–27.; Wyttenbach, T.; Bowers, M. T. Intermolecular Interactions in Biomolecular Systems Examined by Mass Spectrometry. Annu. Rev. Phys. Chem. 2007, 58 (1), 511–533.; Chen, F.; Gülbakan, B.; Weidmann, S.; Fagerer, S. R.; Ibáñez, A. J.; Zenobi, R. Applying Mass Spectrometry to Study Non-Covalent Biomolecule Complexes. Mass Spectrom. Rev. 2016, 35 (1), 48–70.; Erba, E. B.; Zenobi, R. Mass Spectrometric Studies of Dissociation Constants of Noncovalent Complexes. Annu. Reports Sect. “C” (Physical Chem. 2011, 107, 199.; Finn, M. G. Emerging Methods for the Rapid Determination of Enantiomeric Excess. Chirality 2002, 14 (7), 534–540.; Sharafutdinova, D. R.; Bazanova, O. B.; Murav´ev, A. A.; Solov´eva, S. E.; Antipin, I. S.; Konovalov, A. I. Composition of Thiacalix[4]Arene Complexes with Monovalent Metal Ions in the Gas Phase: MALDI Mass Spectrometry. Russ. Chem. Bull. 2015, 64 (8), 1823–1828.; Cameron, K. S.; Fielding, L. NMR Diffusion Spectroscopy as a Measure of Host - Guest Complex Association Constants and as a Probe of Complex Size. J. Org. Chem. 2001, 66 (4), 6891–6895.; Kovrigin, E. L. NMR Line Shapes and Multi-State Binding Equilibria. J. Biomol. NMR 2012, 53, 257–270.; Funasaki, N.; Nomura, M.; Ishikawa, S.; Neya, S. NMR Chemical Shift References for Binding Constant Determination in Aqueous Solutions. J. Phys. Chem. B 2001, 105 (30), 7361–7365.; Kemmer, G.; Keller, S. Nonlinear Least-Squares Data Fitting in Excel Spreadsheets. Nat. Protoc. 2010, 5 (2), 267–281.; Lowe, A. J.; Pfeffer, F. M.; Thordarson, P. Determining Binding Constants from 1 H NMR Titration Data Using Global and Local Methods: A Case Study Using [ n ]Polynorbornane-Based Anion Hosts. Supramol. Chem. 2012, 24 (8), 585–594.; Hynes, M. J. EQNMR: A Computer Program for the Calculation of Stability Constants from Nuclear Magnetic Resonance Chemical Shift Data. J. Chem. Soc. Dalt. Trans. 1993, No. 2, 311.; Beyeh, N. K.; Pan, F.; Ras, R. H. A. N -Alkyl Ammonium Resorcinarene Chloride Receptors for Guest Binding in Aqueous Environment. Asian J. Org. Chem. 2016, 1–7.; Kharlamov, S. V; Latypov, S. K. Modern Diffusion-Ordered NMR Spectroscopy in Chemistry of Supramolecular Systems: The Scope and Limitations. Russ. Chem. Rev. 2010, 79 (8), 635–653.; Slovak, S.; Evan-Salem, T.; Cohen, Y. Self-Assembly of a Hexameric Aggregate of a Lipophilic Calix[4]Pyrrole−Resorcinarene Hybrid in Solution: A Diffusion NMR Study. Org. Lett. 2010, 12 (21), 4864–4867.; Macchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D. Determining Accurate Molecular Sizes in Solution through NMR Diffusion Spectroscopy. Chem. Soc. Rev. 2008, 37 (3), 479–489.; Horin, I.; Adiri, T.; Zafrani, Y.; Cohen, Y. Bis-Resorcin[4]Arene Selectively Forms Hexameric Capsules in Apolar Solvents: Evidence from Diffusion NMR. Org. Lett. 2018, 20 (13), 3958–3961.; Späth, A.; König, B. Molecular Recognition of Organic Ammonium-Ions in Solution Using Synthetic Receptors. Beilstein J. Org. Chem. 2010, 6, 32–133.; Åhman, A.; Luostarinen, M.; Rissanen, K.; Nissinen, M. Complexation of C-Methyl Pyrogallarene with Small Quaternary and Tertiary Alkyl Ammonium Cations. New J. Chem. 2007, 31 (1), 169–177.; Schnatwinkel, B.; Rekharsky, M. V.; Brodbeck, R.; Borovkov, V. V.; Inoue, Y.; Mattay, J. Thermodynamic Aspects of the Host–Guest Chemistry of Pyrogallol[4]Arenes and Peralkylated Ammonium Cations. Tetrahedron 2009, 65 (13), 2711–2715.; Fujisawa, I.; Aoki, K. Glycine Betaine Recognition through Cation−π Interactions in Crystal Structures of Glycine Betaine Complexes with C-Ethyl-Pyrogallol[4]Arene and C-Ethyl-Resorcin[4]Arene as Receptors. Crystals 2013, 3 (2), 306–314.; Schnatwinkel, B.; Rekharsky, M. V.; Borovkov, V. V.; Inoue, Y.; Mattay, J. Pyrogallol[4]Arenes as Artificial Receptors for l-Carnitine. Tetrahedron Lett. 2009, 50 (13), 1374–1376.; Ballester, P.; Shivanyuk, A.; Far, A. R.; Rebek, J. A Synthetic Receptor for Choline and Carnitine. J. Am. Chem. Soc. 2002, 124 (47), 14014–14016.; Fujisawa, I.; Kitamura, Y.; Okamoto, R.; Murayama, K.; Kato, R.; Aoki, K. Crystal Structure of Pyrogallol[4]Arene Complex with Phosphocholine: A Molecular Recognition Model for Phosphocholine through Cation–π Interaction. J. Mol. Struct. 2013, 1038, 188–193.; Fujisawa, I.; Takeuchi, D.; Kitamura, Y.; Okamoto, R.; Aoki, K. Crystal Structure of an L-Carnitine Complex with Pyrogallol[4]Arene. J. Phys. Conf. Ser. 2012, 352 (1), 012043.; Fowler, D. A.; Pfeiffer, C. R.; Teat, S. J.; Beavers, C. M.; Baker, G. A.; Atwood, J. L. Illuminating Host–Guest Cocrystallization between Pyrogallol[4]Arenes and the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethylsulfate. CrystEngComm 2014, 16 (27), 6010–6022.; Demura, M.; Yoshida, T.; Hirokawa, T.; Kumaki, Y.; Aizawa, T.; Nitta, K.; Bitter, I.; Tóth, K. Interaction of Dopamine and Acetylcholine with an Amphiphilic Resorcinarene Receptor in Aqueous Micelle System. Bioorg. Med. Chem. Lett. 2005, 15 (5), 1367–1370.; Fowler, D. A.; Tian, J.; Barnes, C.; Teat, S. J.; Atwood, J. L. Cocrystallization of C-Butyl Pyrogallol[4]Arene and C-Propan-3-Ol Pyrogallol[4]Arene with Gabapentin. CrystEngComm 2011, 13 (5), 1446–1449.; Fujisawa, I.; Kitamura, Y.; Kato, R.; Murayama, K.; Aoki, K. Crystal Structures of Resorcin[4]Arene and Pyrogallol[4]Arene Complexes with DL-Pipecolinic Acid. Model Compounds for the Recognition of the Pipecolinyl Ring, a Key Fragment of FK506, through C–H⋯π Interaction. J. Mol. Struct. 2014, 1056–1057, 292–298.; Pfeiffer, C. R.; Fowler, D. a.; Teat, S.; Atwood, J. L. Cocrystallization of Pyrogallol[4]Arenes with 1-(2-Pyridylazo)-2-Naphthol. CrystEngComm 2014, 16 (47), 10760–10773.; Pfeiffer, C. R.; Fowler, D. A.; Atwood, J. L. Endo vs Exo Bowl: Complexation of Xanthone by Pyrogallol[4]Arenes. Cryst. Growth Des. 2014, 14 (8), 4205–4213.; Podyachev, S. N.; Sudakova, S. N.; Syakaev, V. V.; Burmakina, N. E.; Shagidullin, R. R.; Morozov, V. I.; Avvakumova, L. V.; Konovalov, A. I. Synthesis and Properties of Potassium Salts of Per-O-Carboxymethyl-Calix[4]Pyrogallols and Their Complexes with Cu2+, Fe3+, and La3+. Russ. Chem. Bull. 2009, 58 (1), 80–88.; Nikolelis, D. P.; Raftopoulou, G.; Psaroudakis, N.; Nikoleli, G.-P. Development of an Electrochemical Chemosensor for the Rapid Detection of Zinc Based on Air Stable Lipid Films with Incorporated Calix4arene Phosphoryl Receptor. Int. J. Environ. Anal. Chem. 2009, 89 (3), 211–222.; Hof, F.; Trembleau, L.; Ullrich, E. C.; Rebek, Jr., J. Acetylcholine Recognition by a Deep, Biomimetic Pocket. Angew. Chemie Int. Ed. 2003, 42 (27), 3150–3153.; Kim, S. K.; Kang, B.; Koh, H. S.; Yoon, Y. J.; Jung, S. J.; Jeong, B.; Lee, K.; Yoon, J. A New Imidazolium Cavitand for the Recognition of Dicarboxylates. Org. Lett. 2004, 6 (25), 4655–4658.; Dalgarno, S. J. Supramolecular Chemistry. Annu. Reports Sect. “B” (Organic Chem. 2009, 105 (0), 190.; Pradeep, C. P.; Cronin, L. Supramolecular Coordination Chemistry. Annu. Reports Sect. “A” (Inorganic Chem. 2007, 103, 287.; dos Santos, C.; Buera, P.; Mazzobre, F. Novel Trends in Cyclodextrins Encapsulation. Applications in Food Science. Curr. Opin. Food Sci. 2017, 16, 106–113.; Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Functionalized Cucurbiturils and Their Applications. Chem. Soc. Rev. 2007, 36 (2), 267–279.; Negin, S.; Gokel, G. W. The Varied Supramolecular Chemistry of Pyrogallol [ 4 ] Arenes. In Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds; Elsevier Inc.: Missouri, 2016; pp 235–256.; Rebek, J.; Shivanyuk, A. Hydrogen-Bonded Capsules in Polar, Protic Solvents. Chem. Commun. 2001, 2374–2375.; Zhang, Q.; Adams, R. D.; Fenske, D. Stable Hydrogen-Bonded Spherical Capsules Formed from Self-Assembly of Pyrogallol[4]Arenes. J. Incl. Phenom. Macrocycl. Chem. 2005, 53 (3–4), 275–279.; Dalgarno, S. J.; Power, N. P.; Warren, J. E.; Atwood, J. L. Rapid Formation of Metal–Organic Nano-Capsules Gives New Insight into the Self-Assembly Process. Chem. Commun. 2008, 0 (13), 1539.; Avram, L.; Cohen, Y.; Rebek Jr., J. Recent Advances in Hydrogen-Bonded Hexameric Encapsulation Complexes. Chem. Commun. 2011, 47 (19), 5368.; Cave, G. W. V.; Dalgarno, S. J.; Antesberger, J.; Ferrarelli, M. C.; McKinlay, R. M.; Atwood, J. L. Investigations into Chain Length Control over Solid-State Pyrogallol[4]Arene Nanocapsule Packing. Supramol. Chem. 2008, 20 (1–2), 157–159.; M. A. Gangemi, C.; Pappalardo, A.; Trusso Sfrazzetto, G. Assembling of Supramolecular Capsules with Resorcin[4]Arene and Calix[n]Arene Building Blocks. Curr. Org. Chem. 2015, 19 (23), 2281–2308.; Kumari, H.; Dennis, C. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Magnetic Differentiation of Pyrogallol[4]Arene Tubular and Capsular Frameworks. J. Am. Chem. Soc. 2013, 135, 7110–7113.; Dalgarno, S. J.; Cave, G. W. V.; Atwood, J. L. Toward the Isolation of Functional Organic Nanotubes. Angew. Chemie Int. Ed. 2006, 45 (4), 570–574.; Kumari, H.; Kline, S. R.; Wycoff, W. G.; Paul, R. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Solution-Phase Structures of Gallium-Containing Pyrogallol[4]Arene Scaffolds. Angew. Chemie Int. Ed. 2012, 51 (21), 5086–5091.; Power, N. P.; Dalgarno, S. J.; Atwood, J. L. Guest and Ligand Behavior in Zinc-Seamed Pyrogallol[4]Arene Molecular Capsules. Angew. Chemie Int. Ed. 2007, 46 (45), 8601–8604.; Jin, P.; Dalgarno, S. J.; Barnes, C.; Teat, S. J.; Atwood, J. L. Ion Transport to the Interior of Metal−Organic Pyrogallol[4]Arene Nanocapsules. J. Am. Chem. Soc. 2008, 130 (51), 17262–17263.; Kumari, H.; Jin, P.; Teat, S. J.; Barnes, C. L.; Dalgarno, S. J.; Atwood, J. L. Entrapment of Elusive Guests within Metal-Seamed Nanocapsules. Angew. Chemie - Int. Ed. 2014, 53 (48), 13088–13092.; Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Metallo-Supramolecular Capsules. Coord. Chem. Rev. 2008, 252 (8–9), 825–841.; Kumari, H.; Mossine, A. V.; Kline, S. R.; Dennis, C. L.; Fowler, D. A.; Teat, S. J.; Barnes, C. L.; Deakyne, C. A.; Atwood, J. L. Controlling the Self-Assembly of Metal-Seamed Organic Nanocapsules. Angew. Chemie Int. Ed. 2012, 51 (6), 1452–1454.; Kumari, H.; Dennis, C. L.; Mossine, A. V; Deakyne, C. A.; Atwood, J. L. Exploring the Magnetic Behavior of Nickel-Coordinated Pyrogallol[4]Arene Nanocapsules. ACS Nano 2012, 6 (1), 272–275.; Adriaenssens, L.; Ballester, P. Hydrogen Bonded Supramolecular Capsules with Functionalized Interiors: The Controlled Orientation of Included Guests. Chem. Soc. Rev. 2013, 42 (8), 3261.; Fowler, D. A.; Mossine, A. V.; Beavers, C. M.; Teat, S. J.; Dalgarno, S. J.; Atwood, J. L. Coordination Polymer Chains of Dimeric Pyrogallol[4]Arene Capsules. J. Am. Chem. Soc. 2011, 133 (29), 11069–11071.; Gangemi, C. M. A.; Pappalardo, A.; Trusso Sfrazzetto, G. Applications of Supramolecular Capsules Derived from Resorcin[4]Arenes, Calix[n]Arenes and Metallo-Ligands: From Biology to Catalysis. RSC Adv. 2015, 5 (64), 51919–51933.; Scott, M. P.; Sherburn, M. S. Resorcinarenes and Pyrogallolarenes. In Comprehensive Supramolecular Chemistry II; Elsevier, 2017; Vol. 1, pp 337–374.; Chakraborty, S.; Saha, A.; Basu, K.; Saha, C. Solid-Phase Benzoylation of Phenols and Alcohols in Microwave Reactor: An Ecofriendly Protocol. Synth. Commun. 2015, 45 (20), 2331–2343.; Abrash, H. I.; Shih, D.; Elias, W.; Malekmehr, F. A Kinetic Study of the Air Oxidation of Pyrogallol and Purpurogallin. Int. J. Chem. Kinet. 1989, 21 (6), 465–476.; Cohen, Y.; Evan-Salem, T.; Avram, L. Hydrogen-Bonded Hexameric Capsules of Resorcin[4]Arene, Pyrogallol[4]Arene and Octahydroxypyridine[4]Arene Are Abundant Structures in Organic Solvents: A View from Diffusion NMR. Supramol. Chem. 2008, 20 (1–2), 71–79.; Kass, J. P.; Zambrano, C. H.; Zeller, M.; Hunter, A. D.; Dueno, E. E. 2,8,14,20-Tetraphenylpyrogallol[4]Arene Dimethylformamide Octasolvate. Acta Crystallogr. Sect. E Struct. Reports Online 2006, 62 (8), o3179–o3180.; Patil, R. S.; Zhang, C.; Atwood, J. L. Process Development for Separation of Conformers from Derivatives of Resorcin[4]Arenes and Pyrogallol[4]Arenes. Chem. - A Eur. J. 2016, 22 (43), 15202–15207.; Dueno, E. E.; Ray, T.; Salvatore, R. N.; Hunter, A. D. 2,8,14,20-Tetrakis(4-Hydroxyphenyl)- Pyrogallol[4]Arene Dimethylformamide Hexasolvate. Acta Crystallogr. Sect. E 2007, E63, o3533–o3534.; Sheikh, M. C.; Takagi, S.; Yoshimura, T.; Morita, H. Mechanistic Studies of DCC/HOBt-Mediated Reaction of 3-Phenylpropionic Acid with Benzyl Alcohol and Studies on the Reactivities of ‘Active Ester’ and the Related Derivatives with Nucleophiles. Tetrahedron 2010, 66 (36), 7272–7278.; Farshori, N. N.; Banday, M. R.; Zahoor, Z.; Rauf, A. DCC/DMAP Mediated Esterification of Hydroxy and Non-Hydroxy Olefinic Fatty Acids with β-Sitosterol: In Vitro Antimicrobial Activity. Chinese Chem. Lett. 2010, 21 (6), 646–650.; Waghmare, A. A.; Hindupur, R. M.; Pati, H. N. Propylphosphonic Anhydride (T3P®): An Expedient Reagent for Organic Synthesis. Rev. J. Chem. 2014, 4 (2), 53–131.; Lin, Z.; Emge, T. J.; Warmuth, R. Multicomponent Assembly of Cavitand-Based Polyacylhydrazone Nanocapsules. Chem. - A Eur. J. 2011, 17 (34), 9395–9405.; José Luis Casas-Hinestroza; https://repositorio.unal.edu.co/handle/unal/77999Test

  9. 9
    رسالة جامعية
  10. 10
    رسالة جامعية