يعرض 1 - 10 نتائج من 33 نتيجة بحث عن '"Motor Imagery"', وقت الاستعلام: 0.96s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    رسالة جامعية

    المساهمون: Gallo Sanchez, Luisa Fernanda, Gonzalez Morales, David Fernando, La Cruz Punte, Alexandra

    وصف الملف: 116 páginas; application/pdf

    العلاقة: V. Asanza, A. Constantine, F. Loayza, E. Peláez y D. Peluffo Ordóñez, «BCI System using a Novel Processing Technique Based on Electrodes Selection for Hand Prothesis Control,» ScienceDirect, pp. 364-369, 2021.; F. Herta, N. Lone y J. Troels Staehelin, «Phantom limb pain: a case of maladaptive CNS plasticity?,» Naure Reviews Neuroscience, pp. 873-881, 2006.; J. Andoh, C. Milde, M. Diers, R. Bekrater Bodmann, J. Trojan, X. Fuchs, S. Becker, S. Desch y F. Herta, «Assessment of cortical reorganization and preserved function in phantom limb pain: a methodological perspective,» Scientific Reports, no 11504, 2020.; K. Zilles, «Brodmann: a pioneer of human brain mapping -his impact on concepts of cortical organization,» Brain, vol. 141, no 11, pp. 3262-3278, 2018.; L. F, B. C, F. C , P. D, B. F y N. S, «Asymmetric activity of NetrinB controls laterality of the Drosophila brain,» Nature Communications, no 1052, 2023.; J. Wolpaw, N. Birbaumer, W. Heetderks, D. McFarland, P. Peckham, G. Schalk, E. Donchin, L. Quatrano, C. Robinson y T. Vaughan, «Brain-computer interface technology: A review of the first international meeting,» IEEE Transactions on Rehabilitation Engineering, vol. 8, no 2, pp. 164-173, 2000.; S. Phadikar, N. Sinha y G. Rajdeep, «Unsupervised feature extraction with autoencoders for EEG based multiclass motor imagery BCI,» Elsevier, vol. 213, no 118901, 2023.; T. l. d. s. reservados, «Emotiv,» Emotiv, 2011. [En línea]. Available: https://www.emotiv.com/epocTest/. [Último acceso: 10 Enero 2023].; V. Lawhern, A. Solon, N. Waytowich, S. Gordon, C. Hung y B. Lance, «EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces,» Neural Engineering, vol. 15, no 056013, 2018.; T. l. d. reservados, «Cerebrum,» 26 Julio 2020. [En línea]. Available: https://cerebrum.la/2020/07/26/el-mayor-logro-de-la-neurociencia-la-interfazTest- cerebro-computadora/ . [Último acceso: 10 Enero 2023].; C. Boya, J. Quintero, J. Serracín y R. Moreno, «Brain computer interface systems: characteristics and applications,» I+D Tecnológico , vol. 15, no 2, 2019.; T. l. d. reservados, «Por primera vez condigen que un brazo artificial se mueva con el pensamiento,» El Espectador, Bogota, 2015.; H. He, S. Qui y X. Ma, «Time-Distributed Attention Network for EEG-Based Motor Imagery Decording From the Same Limb,» IEEE Transactions On Neural Systems And Rehabilitation Engineering , vol. 30, pp. 496-508, 2022.; Y. Liu, Z. Wang, S. Huang, J. Wei, X. Li y D. Ming, «EEG Characteristic Investigation of the Sixth-Finger Motor Imagery,» Springer Nature Switzerland , no 13013, pp. 654-663, 2021.; P. G, B. C, S. A y L. d. S. F H, «Mu rhythm (de)synchronization and EEG single- trial classification of different motor imagery tasks,» Neuroimage, vol. 31, no 1, pp. 153-159, 2006.; B. Edelman, B. Baxter y B. He, «EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks,» IEEE transactions on Biomedical Engineering, vol. 63, no 1, pp. 4-14, 2016.; A. Al-Saegh, S. A. Dawwd y J. M. Abdul-Jabbar, «Deep learning for motor imagery EEG-based classification: A review,» Elsevier, vol. 63, no 102172, 2021.; J. A. Martinez Leon, J. M. Cano Izquierdo y J. Ibarrola, «Are low cost Brain Computer Interface headsets ready for motor imagery applications?,» Elsevier, vol. 49, pp. 136-144, 2016.; Y. L. Cheng, L. Gerrit, J. Khairunnisa , A. Fazah y F. Kamaruzama, «Classification of Electroencephalogram Data from Hand Grasp and Release Movements for BCI Controlled Prosthesis,» Elsevier, vol. 26, pp. 374-381, 2016.; M. Ochiddin, R. Muhammond, K. Abdullah , D. Fair, S. Kumar, A. Sharma y A. Dehzangi, «CluSem: Accurate clustering-based ensemble method to predict motor imagery tasks from multi-channel EEG data,» Elsevier, 2021.; V. Stock y A. Balbinot, «Movement imagery classification in Emotiv cap based system by Naïve Bayes,» IEEE, pp. 4435-4438, 2016.; L. Schiatti, L. Faes, J. Tessadori, G. Barresi y L. Mattos, «Mutual Information- Based Feature Selection for Low-Cost BCIs Based on Motor Imagery,» IEEE, pp. 2772-2775, 2016.; D. Chopra y R. Tanzi, Super Brain, Estados Unidos : Harmony Books, 2012.; T. l. d. reservados, «Centros Auditivos, Audífonos en Valencia,» 19 Diciembre 2018. [En línea]. Available: https://www.centroauditivo-valencia.es/perdidaTest- auditiva-leve-percepcion-habla-ruido/ . [Último acceso: 13 Marzo 2023].; J. S. Castro Cardona y N. Forero Segovia, «Eficacia al alternar las ondas cerebrales,» RREDSI Red Regional de Semilleros de investigacion, pp. 2026- 2028, 2014.; D. reservados, «Neuroscenter,» [En línea]. Available: https://neuroscenter.com/neurofeedback/ondas-cerebralesTest/. [Último acceso: 13 Marzo 2023].; E. d. vida, «Estilo de vida,» 17 Junio 2020. [En línea]. Available: https://estilodevidalibre.com/la-mente-despierta-como-optimizar-las-ondasTest- cerebrales-para-estados-superiores-de-conciencia/. [Último acceso: 13 Marzo 2023].; A. Iranzo de Rique, «Clinicbarcelona,» 17 Abirl 2022. [En línea]. Available: https://www.clinicbarcelona.org/asistencia/pruebas-yTest- procedimientos/electroencefalograma. [Último acceso: 13 Marzo 2023].; D. reservados, «Fisiologiafacmed,» 12 Noviembre 2019. [En línea]. Available: https://fisiologia.facmed.unam.mx/wp-content/uploads/2019/09/UTITest- pr%C3%A1ctica-7-a.-Electroencefalograma.-AnexoManual.pdf. [Último acceso: 13 Marzo 2023].; A. V. Vasilakos y R. A. Ramadan, «Brain computer interface: control signlas review,» Elsevier, vol. 223, pp. 26-44, 2017.; G. Maggotti, «Libro online de IAAR,» 25 Noviembre 2017. [En línea]. Available: https://iaarbook.github.io/interfaz-cerebro-computadora-BCITest/. [Último acceso: 13 Marzo 2023].; G. Pfurtscheller, «Brain-computer interface-satate of the art and future prospects,» Dpmi, pp. 509-510, 2004.; P. M. Fitts, «The information capacity of the human motor system in controlling the amplitude of movement,» Experimental Psychology, vol. 47, no 6, pp. 381-391, 1954.; A. Solodkin, P. Hlustik, E. Chen y S. Small, «Fine Modulation in Network Activation durin Motor Execution and Motor Imagery,» Oxford University Press, vol. 14, no 11, pp. 1246-1255, 2004.; G. Pfurtscheller y F. Lopes da Silva, «Event-related EEG/MEG synchronization and desynchronization: basic principles,» Elsevier, vol. 110, pp. 1842-1857, 1999.; G. Pfurtscheller, «Event-related synchronozation (ERS): an electrophysiological correlate of cortical areas at rest,» Elsevier, vol. 83, pp. 62-69, 1992.; D. mne, «mne,» 23 Febrero 2023. [En línea]. Available: https://mne.tools/stable/auto_tutorials/preprocessing/30_filtering_resampling.htmlTest# sphx-glr-auto-tutorials-preprocessing-30-filtering-resampling-py. [Último acceso: 14 Marzo 2023].; D. reservados, «scalahed,» [En línea]. Available: http://gc.scalahed.com/recursos/files/r145r/w868w/U3_liga3.htmlTest. [Último acceso: 14 Marzo 2023].; Y. Dezhong, «A method to standardize a reference of scalp EEG recordings to a point at infinity,» Physiol, vol. 22, no 4, 2001.; Pierre Ablin, Jean-Francois Cardoso y Alexandre Gramfort, «Faster independent component analysis by preconditioning with Hessian approximations,» IEEE Transactions on Signal Processing, vol. 66, no 15, pp. 4040-4049, 2018.; J. M.-G. a. G. P. H. Ramoser, «Optimal spatial filtering of single trial EEG during imagined hand movement,» IEEE Transactions on Rehabilitation Engineering, vol. 8, no 4, pp. 441-446, 2000.; M. R. M. Sajjad Afrakhteh, Energy Efficiency of Medical Devices and Healthcare Applications, Academic press, 2020, pp. 25-52.; Q. L. W. M. S. Q. X. Qingsong Ai, Advanced Rehabilitative Technology, Academic Press, 2018.; M. Krauledat, G. Dornhege, B. Blankertz, F. Losch, G. Curio y K. Müller, «Improving speed and accuarcy of brain-computer interfaces using readiness potential features,» Proceeding of the 26th Annual International Conference of the IEEE EMBS, pp. 4511-4515, 2004.; Wikipedia, «Wikipedia the free encyclopedia,» 7 Febrero 2021. [En línea]. Available: https://en.wikipedia.org/wiki/Common_spatial_patternTest. [Último acceso: 15 Marzo 2023].; C. Ortiz Echeverri, S. Salazar Colores, R. Gómez loenzo y J. Rodriguez, «A New Approach for Motor Imagery Classification Based on Sorted Blind Source Separation, Continuous Wavelet Transform, and Convolutional Neural Network,» Sensors, Signal and Image Processing in Biomedicine and Assited Living, vol. 19, no 4541, 2019.; W. McCullock y W. Pitts, «A logical calculus of the ideas immanent in nervous activity,» Bulletin of Mathematical Biophysics, vol. 5, no 4, pp. 115-133, 1943.; F. Rosenblatt, «The Perceptron: A Perceiving and Recognizing Automaton,» Cornell Aeronautical Laboratory, 1957.; Intel, «Intel,» [En línea]. Available: https://www.intel.es/content/www/es/es/internetTest- of-things/computer-vision/convolutional-neural-networks.html. [Último acceso: 15 Marzo 2023].; T. l. d. reservados, «IA Latam,» [En línea]. Available: https://iaTest- latam.com/2019/02/06/entendiendo-las-redes-neuronales-de-la-neurona-a-rnn- cnn-y-deep-learning/. [Último acceso: 15 Marzo 2023].; D. Calvo, «Diego Calvo,» 20 Julio 2017. [En línea]. Available: https://www.diegocalvo.es/red-neuronal-convolucionalTest/. [Último acceso: 16 Marzo 2023].; M. Diamond , E. Bennett, D. Krech y M. Rosenzweig, «Chemical and Anatomical Plasticity of Brain,» Science, vol. 146, no 3644, pp. 610-619, 196; T. l. d. reservados, «Hiwonder,» 2015. [En línea]. Available: https://www.hiwonder.comTest/. [Último acceso: 15 Febrero 2023].; Emotiv, «Emotiv,» 2022. [En línea]. Available: https://emotiv.gitbook.io/epoc-userTest- manual/using-headset/epoc+_headset_details. [Último acceso: 16 Marzo 2023].; Warren, «GitHub,» 27 Diciembre 2018. [En línea]. Available: https://github.com/CymatiCorp/CyKitTest. [Último acceso: 14 Octubre 2022].; L. A. Chernikova, O. A. Mokienko, A. A. Frolov y P. D. Bobrov, «Motor Imagery and Its Practical Application,» Neuroscience and Behavioral Physiology, vol. 44, no 5, pp. 483-489, 2014.; M. Gregg, C. Hall y A. Butler, «The MIQ-RS: A Suitable Option for Examining Movement Imagery Ability,» Evidence-based Complementary and Alternative Medicice , vol. 7, no 2, pp. 249-257, 2007.; F. Lebon, C. Papaxanthis, J. Gaveau y C. Ruffino, «An acute session of motor imagery training indices use-dependent plasticity,» Scientific reports, vol. 9, no 20002, 2019.; V. Lawhern, A. Solon, N. Waytowich, S. Gordon, C. Hung y B. Lance, «GitHub,» 2018. [En línea]. Available: https://github.com/vlawhern/arl-eegmodelsTest. [Último acceso: 28 Septiembre 2023].; C. Brunner, R. Leeb, R. Müller Putz, A. Schlögl y G. Pfurtscheller, «BBCI,» 3 Julio 208. [En línea]. Available: https://www.bbci.de/competition/ivTest/. [Último acceso: 12 Octubre 2022].; W. electronica, «wilaebaelectronica,» 9 JUlio 2020. [En línea]. Available: https://wilaebaelectronica.blogspot.com/2017/01/filtros-pasa-banda.htmlTest. [Último acceso: 14 Marzo 2023].; Castellanos Delgado, S. (2023). Control para un prototipo de simulación de prótesis por medio de la intención del movimiento en señales electroencefalográficas [Trabajo de pregrado. Universidad de Ibagué].; https://hdl.handle.net/20.500.12313/4087Test

  3. 3
    رسالة جامعية
  4. 4
    رسالة جامعية

    المساهمون: Castellanos Dominguez, Cesar Germán, Grupo de Control y Procesamiento Digital de Señales, https://scholar.google.com.co/citations?user=kzOD4RQAAAAJ&hl=enTest

    وصف الملف: xii, 77 páginas; application/pdf

    العلاقة: B. Babadi, "Neural encoding and decoding," Handbook of Neuroengineering, pp. 1-24, 2020.; A. Singh, A. A. Hussain, S. Lal, and H. W. Guesgen, \A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface," Sensors, vol. 21, no. 6, p. 2173, 2021.; A. M. Alvarez-Meza, L. F. Velasquez-Martinez, and G. Castellanos-Dominguez, "Time-series discrimination using feature relevance analysis in motor imagery classi cation," Neurocomputing, vol. 151, pp. 122-129, 2015.; Y. K. Stolbkov, T. R. Moshonkina, I. V. Orlov, E. S. Tomilovskaya, I. B. Kozlovskaya, and Y. P. Gerasimenko, "The neurophysiological correlates of real and imaginary locomotion," Human Physiology, vol. 45, no. 1, pp. 104-114, 2019.; B. Fadlallah, S. Seth, A. Keil, and J. Principe, "Quantifying cognitive state from eeg using dependence measures," IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp. 2773-2781, 2012.; Z. Chen, "A primer on neural signal processing," IEEE Circuits and Systems Magazine, vol. 17, no. 1, pp. 33-50, 2017; S. N. Abdulkader, A. Atia, and M.-S. M. Mostafa, "Brain-computer interfacing: Applications and challenges," Egyptian Informatics Journal, vol. 16, no. 2, pp. 213-230, 2015.; M. W. Woolrich, A. Baker, H. Luckhoo, H. Mohseni, G. Barnes, M. Brookes, and I. Rezek, "Dynamic state allocation for meg source reconstruction," Neuroimage, vol. 77, pp. 77-92, 2013.; C. Guerrero-Mosquera and A. Navia-Vazquez, "Automatic removal of ocular artefacts using adaptive filtering and independent component analysis for electroencephalogram data," IET signal processing, vol. 6, no. 2, pp. 99-106, 2012.; M. Saeidi, W. Karwowski, F. V. Farahani, K. Fiok, R. Taiar, P. Hancock, and A. AlJuaid, "Neural decoding of eeg signals with machine learning: a systematic review," Brain Sciences, vol. 11, no. 11, p. 1525, 2021.; D. R. Ripoll, "Introducción a la organización del sistema nervioso," in Neurociencia cognitiva. Editorial Médica Panamericana, 2013, pp. 67-110.; Y.-H. Liu, L.-F. Lin, C.-W. Chou, Y. Chang, Y.-T. Hsiao, and W.-C. Hsu, "Analysis of electroencephalography event-related desynchronisation and synchronisation induced by lower-limb stepping motor imagery," Journal of Medical and Biological Engineering, vol. 39, no. 1, pp. 54-69, 2019.; G. Rodríguez-Bermúdez and P. J. Garcíaa-Laencina, "Automatic and adaptive classi cation of electroencephalographic signals for brain-computer interfaces," Journal of medical systems, vol. 36, no. 1, pp. 51-63, 2012.; S. Lemm, B. Blankertz, T. Dickhaus, and K.-R. M uller, "Introduction to machine learning for brain imaging," Neuroimage, vol. 56, no. 2, pp. 387-399, 2011.; E. Opsommer, O. Chevalley, and N. Korogod, "Motor imagery for pain and motor function after spinal cord injury: a systematic review," Spinal Cord, vol. 58, pp. 262-274, 2019.; T. Machado, A. Carregosa, M. Santos, N. da Silva, and M. Melo, "E cacy of motor imagery additional to motor-based therapy in the recovery of motor function of the upper limb in post-stroke individuals: a systematic review," Topics in Stroke Rehabilitation, vol. 26, no. 7, pp. 548-553, 2019.; G. Aymeric and D. Ursula, \Bene ts of motor imagery for human space flight: A brief review of current knowledge and future applications," Frontiers in Physiology, no. 10, p. 396, 2019.; P. Barhoun, I. Fuelscher, E. Kothe, J. He, G. Youssef, P. Enticott, J. Williams, and C. Hyde, "Motor imagery in children with dcd: A systematic and meta-analytic review of hand-rotation task performance," Neuroscience & Biobehavioral Reviews, vol. 99, pp. 282-297, 2019.; V. Nicholson, N. Watts, Y. Chani, and J. Keogh, "Motor imagery training improves balance and mobility outcomes in older adults: a systematic review," Journal of Physiotherapy, vol. 65, no. 4, pp. 200 - 207, 2019.; T. MacIntyre, M. A. Madan, C, C. Collet, and A. Guillot, "Motor imagery, performance and motor rehabilitation," vol. 240, pp. 141-159, 2018.; S. G. Boe and S. N. Kraeutner, "Assessing motor imagery ability through imagery-based learning: An overview and introduction to miscreen, a mobile app for imagery assessment," Imagination, Cognition and Personality, vol. 37, no. 4, pp. 430-447, 2018.; Z. Suica, P. Platteau-Waldmeier, S. Koppel, A. Schmidt-Trucksaess, T. Ettlin, and C. Schuster-Amft, "Motor imagery ability assessments in four disciplines: protocol for a systematic review," BMJ Open, vol. 8, no. 12, 2018.; L. Power, H. F. Neyedli, S. G. Boe, and T. Bardouille, "E cacy of low-cost wireless neurofeedback to modulate brain activity during motor imagery," Biomedical Physics & Engineering Express, vol. 6, no. 3, p. 035024, 2020.; N. Tiwari, D. R. Edla, S. Dodia, and A. Bablani, "Brain computer interface: A comprehensive survey," Biologically Inspired Cognitive Architectures, vol. 26, pp. 118-129, 2018.; M. Z. Baig, N. Aslam, and H. P. H. Shum, "Filtering techniques for channel selection in motor imagery EEG applications: a survey," Arti cial Intelligence Review, pp. 1-26, 2019.; M. L. Stavrinou, L. Moraru, L. Cimponeriu, S. Della Penna, and A. Bezerianos, "Evaluation of cortical connectivity during real and imagined rhythmic nger tapping," Brain Topography, vol. 19, no. 3, pp. 137-145, 2007.; L. S. Imperatori, M. Betta, L. Cecchetti, A. Canales-Johnson, E. Ricciardi, F. Siclari, P. Pietrini, S. Chennu, and G. Bernardi, "Eeg functional connectivity metrics wpli and wsmi account for distinct types of brain functional interactions," Scienti c reports, vol. 9, no. 1, pp. 1-15, 2019.; B. Juan, E. Santiago, B.-M. Arturo, N. Marius, B. Javier, F. Eduardo, S. Surjo, and G.-A. Nicolas, "Synchronization of slow cortical rhythms during motor imagery-based brain-machine interface control," International Journal of neural systems, vol. 29, no. 5, p. 1850045, 2019.; P. Wierzga la, D. Zapa la, G. M. Wojcik, and J. Masiak, "Most popular signal processing methods in motor-imagery bci: a review and meta-analysis," Frontiers in neuroinformatics, vol. 12, p. 78, 2018.; E. Friedrich, R. Scherer, and C. Neuper, "Stability of event-related (de-) synchronization during brain-computer interface-relevant mental tasks," Clinical Neurophysiology, vol. 124, no. 1, pp. 61-69, 2013.; P. K. Pattnaik and J. Sarraf, "Brain computer interface issues on hand movement," Computer and Information Sciences, vol. 30, no. 1, pp. 18-24, 2018.; Y. Park and W. Chung, "Frequency-optimized local region common spatial pattern approach for motor imagery classi cation," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 7, pp. 1378-1388, 2019.; S. Saha, K. I. U. Ahmed, R. Mostafa, L. Hadjileontiadis, and A. Khandoker, "Evidence of variabilities in EEG dynamics during motor imagery-based multiclass brain-computer interface," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 2, pp. 371-382, 2018.; M. Ahn and S. C. Jun, "Performance variation in motor imagery brain-computer interface: a brief review," Journal of neuroscience methods, vol. 243, pp. 103-110, 2015.; C. Jeunet, S. Debener, F. Lotte, J. Mattout, R. Scherer, and C. Zich, "Mind the traps! design guidelines for rigorous BCI experiments," in Brain-Computer Interfaces Handbook. CRC Press, 2018, pp. 639-660.; M. C. Thompson, "Critiquing the concept of bci illiteracy," Science and engineering ethics, vol. 25, no. 4, pp. 1217-1233, 2019.; T. Liu, G. Huang, N. Jiang, L. Yao, and Z. Zhang, "Reduce brain computer interface ine ciency by combining sensory motor rhythm and movement-related cortical potential features," Journal of neural engineering, vol. 17, no. 3, p. 035003, 2020.; P. Durka, D. Ircha, C. Neuper, and G. Pfurtscheller, "Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation," Medical & biological engineering & computing, vol. 39, pp. 315-321, 2001.; R. Grandchamp and A. Delorme, "Single-trial normalization for event-related spectral decomposition reduces sensitivity to noisy trials," Frontiers in Psychology, vol. 2, p. 236, 2011.; H. Yuan and B. He, "Brain{computer interfaces using sensorimotor rhythms: current state and future perspectives," IEEE Transactions on Biomedical Engineering, vol. 61, no. 5, pp. 1425-1435, 2014.; X. Tang, W. Li, X. Li, W. Ma, and X. Dang, "Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network," Expert Systems with Applications, vol. 149, p. 113285, 2020.; L. Gao, J. Wang, and L. Chen, "Event-related desynchronization and synchronization quanti cation in motor-related eeg by kolmogorov entropy," Journal of neural engineering, vol. 10, no. 3, p. 036023, 2013.; H. Azami, P. Li, S. Arnold, J. Escudero, and A. Humeau-Heurtier, "Fuzzy entropy metrics for the analysis of biomedical signals: Assessment and comparison," IEEE Access, vol. 7, pp. 104 833-104 847, 2019.; W.-Y. Hsu, "Assembling a multi-feature EEG classifier for left-right motor imagery data using wavelet-based fuzzy approximate entropy for improved accuracy," International journal of neural systems, vol. 25 8, p. 1550037, 2015.; C. Shunfei, L. Zhizeng, and G. Haitao, "An entropy fusion method for feature extraction of EEG," Neural Computing and Applications, vol. 29, pp. 857-863, 2016.; P. Sri, K. Yashasvi, A. Anjum, A. Bhattacharyya, and R. Pachori, "Development of an Efective Computing Framework for Classi cation of Motor Imagery EEG Signals for Brain-Computer Interface". Singapore: Springer Singapore, 2020, pp. 17-35.; M. Rostaghi and H. Azami, "Dispersion entropy: A measure for time-series analysis," IEEE Signal Processing Letters, vol. 23, pp. 610-614, 2016.; K. Kuntzelman, L. Rhodes, L. Harrington, and V. Miskovic, "A practical comparison of algorithms for the measurement of multiscale entropy in neural time series data," Brain and Cognition, vol. 123, pp. 126-135, 2018.; Y. Li, X. Gao, and Wang.L, "Reverse dispersion entropy: A new complexity measure for sensor signal," Sensors (Basel, Switzerland), vol. 19, 2019.; E. Kafantaris, I. Piper, M. Lo, and J. Escudero, "Augmentation of dispersion entropy for handling missing and outlier samples in physiological signal monitoring," Entropy, no. 319, pp. 1-26, 2020.; E. Pitsik, N. Frolov, K. Hauke, V. Grubov, V. Maksimenko, J. Kurths, and A. Hramov, "Motor execution reduces eeg signals complexity: Recurrence quanti cation analysis study," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, no. 2, p. 023111, 2020.; M. Miao, H. Zeng, A. Wang, C. Zhao, and F. Liu, \Discriminative spatial-frequency-temporal feature extraction and classi cation of motor imagery EEG: An sparse regression and weighted naïve bayesian classi fier-based approach," Journal of neuroscience methods, vol. 278, pp. 13-24, 2017.; N. Bigdely-Shamlo, G. Ibagon, C. Kothe, and T. Mullen, "Finding the optimal cross-subject EEG data alignment method for analysis and BCI," in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, pp. 1110-1115.; S. Fazli, S. Dähne, W. Samek, F. Biebmann, and K. Müller, "Learning from more than one data source: Data fusion techniques for sensorimotor rhythm-based brain-computer interfaces," Proceedings of the IEEE, vol. 103, no. 6, pp. 891-906, 2015.; G. Lio and P. Boulinguez, "How does sensor-space group blind source separation face inter-individual neuroanatomical variability? insights from a simulation study based on the PALS-B12 atlas," Brain Topography, vol. 31, pp. 62-75, 2016.; X. Gong, L. Mao, Y. Liu, and Q. Lin, "A jacobi generalized orthogonal joint diagonalization algorithm for joint blind source separation," IEEE Access, vol. 6, pp. 38 464{38 474, 2018.; Y. Zhang, C. S. Nam, G. Zhou, J. Jin, X. Wang, and A. Cichocki, "Temporally constrained sparse group spatial patterns for motor imagery BCI," IEEE Transactions on Cybernetics, vol. 49, no. 9, pp. 3322-3332, 2019; A. de Cheveigné, G. M. D. Liberto, D. Arzounian, D. D. Wong, J. Hjortkjaer, S. Fuglsang, and L. C. Parra, "Multiway canonical correlation analysis of brain data," NeuroImage, vol. 186, pp. 728-740, 2019.; R. J. Huster and L. Raud, "A tutorial review on multi-subject decomposition of eeg," Brain topography, vol. 31, no. 1, pp. 3-16, 2018.; D. K. Emge, F.-B. Vialatte, G. Dreyfus, and T. Adali, "Independent vector analysis for SSVEP signal enhancement, detection, and topographical mapping," Brain Topography, vol. 31, no. 1, pp. 117-124, 2018.; S. Bhinge, R. Mowakeaa, V. D. Calhoun, and T. Adali, "Extraction of time-varying spatiotemporal networks using parameter-tuned constrained iva," IEEE transactions on medical imaging, vol. 38, no. 7, pp. 1715-1725, 2019.; D. A. Bridwell, J. F. Cavanagh, A. G. E. Collins, M. D. Nunez, R. Srinivasan, S. Stober, and V. D. Calhoun, "Moving beyond ERP components: A selective review of approaches to integrate EEG and behavior," Frontiers in Human Neuroscience, vol. 12, p. 106, 2018; N. Kriegeskorte, M. Mur, and P. Bandettini, "Representational similarity analysis -connecting the branches of systems neuroscience," Frontiers in Systems Neuroscience, vol. 2, p. 4, 2008.; Muller, Vidaurre, Schreuder, Meinecke, M. Bunau, J. Muller, C. Vidaurre, M. Schreuder, F. Meinecke, P. Bunau, and K. Muller, 2017.; A. Singh, S. Lal, and H. W. Guesgen, "Architectural review of co-adaptive brain computer interface," in 2017 4th Asia-Paci c World Congress on Computer Science and Engineering (APWC on CSE). IEEE, 2017, pp. 200-207.; A. Abu-Rmileh, E. Zakkay, L. Shmuelof, and O. Shriki, "Co-adaptive training improves e cacy of a multi-day eeg-based motor imagery bci training," Frontiers in Human Neuroscience, vol. 13, p. 362, 2019.; L. M. Alonso-Valerdi, "Python executable script for estimating two effective parameters to individualize brain-computer interfaces: Individual alpha frequency and neurophysiological predictor," Frontiers in neuroinformatics, vol. 10, p. 22, 2016.; N. S. E. M. Noor and H. Ibrahim, "Machine learning algorithms and quantitative electroencephalography predictors for outcome prediction in traumatic brain injury: A systematic review," IEEE Access, vol. 8, pp. 102 075-102 092, 2020.; L. A. Weber, T. Ethofer, and A.-C. Ehlis, "Predictors of neurofeedback training outcome: A systematic review," NeuroImage: Clinical, vol. 27, p. 102301, 2020.; M. Vukelic and A. Gharabaghi, "Self-regulation of circumscribed brain activity modulates spatially selective and frequency speci fic connectivity of distributed resting state networks," Frontiers in behavioral neuroscience, vol. 9, p. 181, 2015.; M. Ahn, H. Cho, S. Ahn, and S. C. Jun, \High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery," PloS one, vol. 8, no. 11, p. e80886, 2013.; A. Bamdadian, C. Guan, K. K. Ang, and J. Xu, "The predictive role of pre-cue eeg rhythms on mi-based bci classi cation performance," Journal of neuroscience methods, vol. 235, pp. 138-144, 2014.; Acqualagna, Laura and Botrel, Loic and Vidaurre, Carmen and Kübler, Andrea and Blankertz, Benjamin, "Large-scale assessment of a fully automatic co-adaptive motor imagery-based brain-computer interface", PLoS ONE bf, 2016, pp. 1-19.; W. Samek, C. Vidaurre, K.-R. Müller, and M. Kawanabe, "Stationary common spatial patterns for brain{computer interfacing," Journal of neural engineering, vol. 9, no. 2, p. 026013, 2012.; Kwon, Cho, A. Won, M. Jun, A. Ahn, "Use of both eyes-open and eyes-closed resting states may yield a more robust predictor of motor imagery BCI performance," Electronics MDPI, vol. 9, p. 690, 2020.; N. Wan, Vai, F. Rosa, "Resting alpha activity predicts learning ability in alpha neurofeedback," Frontiers in human neuroscience, vol. 8, p. 500, 2014.; Solesio-Jofre, Beets, Woolley, Pauwels, M. Chalavi, "Age-dependent modulations of resting state connectivity following motor practice," vol. 10, p. 25, 2018.; Corsi, Chavez, Schwartz, George, Hugueville, Kahn, Dupont, Bassett, M. de Vico Fallani, "Functional disconnection of associative cortical areas predicts performance during BCI training," NeuroImage, vol. 209, p. 116500, 2020.; C. A. Stefano Filho, T. B. d. S. Costa, L. Uribe, P. Rodrigues, D. Soriano, R. Attux, and G. Castellano, "On the (in) e cacy of motor imagery training without feedback and event-related desynchronizations considerations," Biomedical Physics & Engineering Express, vol. 6, no. 3, p. 035030, 2020.; W. Daeglau, Debener, K. Condro, M. Daeglau, F. Wallhoff, S. Debener, I. Condro, C. Kranczioch, and C. Zich, "Challenge accepted? individual performance gains for motor imagery practice with humanoid robotic EEG neurofeedback," Sensors, vol. 20, p. 1620, 2020.; L. Velasquez-Martinez, J. Caicedo-Acosta, and G. Castellanos-Dominguez, "Entropy-based estimation of event-related de/synchronization in motor imagery using vector-quantized patterns," Entropy, vol. 22, no. 6, p. 703, 2020.; P. Chholak, M. Kurkin, P. Hramov, "Phase-amplitude coupling between mu and gamma-waves to carry motor commands," in Proceedings of the 2019 3rd School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), Innopolis, Russia, pp. 39-45 , 2019.; B. Kim and C. Winstein, "Can neurological biomarkers of brain impairment be used to predict poststroke motor recovery? A systematic review," Neurorehabilitation and neural repair, vol 31, pp. 3-24, 2017.; J. Yperman, T. Becker, D. Valkenborg, V. Popescu, N. Hellings, B. V. Wijmeersch, and L. M. Peeters, "Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis," BMC neurology, vol. 20, no. 1, pp. 1-15, 2020.; L. D. Fiederer, M. V olker, R. T. Schirrmeister, W. Burgard, J. Boedecker, and T. Ball, "Hybrid brain-computer-interfacing for human-compliant robots: inferring continuous subjective ratings with deep regression," Frontiers in Neurorobotics, vol. 13, p. 76, 2019.; A. H. Shahid and M. P. Singh, "A deep learning approach for prediction of parkinson's disease progression," Biomedical Engineering Letters, vol. 10, no. 2, pp. 227-239, 2020.; Pandey, K. Pandey, and R. Janghel, "Recent deep learning techniques, challenges and its applications for medical healthcare system: a review," Neural Processing Letters, vol. 50, pp. 1907-1935, 2019.; A. S. Aghaei, M. S. Mahanta, and K. N. Plataniotis, "Separable common spatiospectral patterns for motor imagery BCI systems," IEEE Transactions on Biomedical Engineering, vol. 63, no. 1, pp. 15-29, 2016.; S. Brandl, K. Muller, and W. Samek, "Alternative CSP approaches for multimodal distributed BCI data," in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016, pp. 003 742-003 747.; A. M. Bastos and J.-M. Schoffelen, "A tutorial review of functional connectivity analysis methods and their interpretational pitfalls," Frontiers in Systems Neuroscience, vol. 9, p. 175, 2016.; S. Dai and Q. Wei, "Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces," Journal of integrative neuroscience, vol. 16, no. 3, pp. 241-254, 2017.; C. Sannelli, C. Vidaurre, K. Müller, and B. Blankertz, "Common spatial pattern patches-an optimized filter ensemble for adaptive brain-computer interfaces," in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, 2010, pp. 4351-4354.; A. Delgado-Bonal and A. Marshak, "Approximate entropy and sample entropy: A comprehensive tutorial," Entropy, vol. 21, p. 541, 2019.; T. Nguyen and T. Nguyen, "Entropy-constrained maximizing mutual information quantization," ArXiv, 2020.; S. Zhao, B. Chen, P. Zhu, and J. Principe, \Fixed budget quantized kernel least mean-square algorithm," Signal Processing, vol. 93, no. 9, pp. 2759-2770, 2013.; D. Cardenas-Pena, A. Tobar-Rodriguez, and G. Castellanos-Dominguez, "Adaptive Bayesian label fusion using kernel-based similarity metrics in hippocampus segmentation," Journal of Medical Imaging, vol. 6, no. 1, pp. 1 - 8, 2019.; J. I. Padilla-Buritica, J. M. Ferrandez-Vicente, G. A. Castaño, and C. D. AcostaMedina, "Non-stationary group-level connectivity analysis for enhanced interpretability of oddball tasks," Frontiers in Neuroscience, 2020.; K. Mikalsen, F. M. Bianchi, C. Soguero-Ruiz, and R. Jenssen, "Time series cluster kernel for learning similarities between multivariate time series with missing data," Pattern Recognition, vol. 76, pp. 569-581, 2018.; B. Blankertz, C. Sannelli, S. Halder, E. M. Hammer, A. Kübler, K.-R. Müller, G. Curio, and T. Dickhaus, "Neurophysiological predictor of smr-based bci performance," Neuroimage, vol. 51, no. 4, pp. 1303-1309, 2010; M. K. I. Molla, A. Al Shiam, M. R. Islam, and T. Tanaka, "Discriminative feature selection-based motor imagery classi cation using eeg signal," IEEE Access, vol. 8, pp. 98 255-98 265, 2020; G. Pfurtscheller and F. L. Da Silva, "Event-related eeg/meg synchronization and desynchronization: basic principles," Clinical neurophysiology, vol. 110, no. 11, pp. 1842-1857, 1999.; H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir et al., "Wide & deep learning for recommender systems," in Proceedings of the 1st workshop on deep learning for recommender systems, 2016, pp. 7-10.; P. Nagabushanam, S. Thomas George, and S. Radha, "Eeg signal classi cation using lstm and improved neural network algorithms," Soft Computing, vol. 24, no. 13, pp. 9981-10 003, 2020.; H. Cho, M. Ahn, S. Ahn, M. Kwon, and S. C. Jun, "Eeg datasets for motor imagery brain computer interface," Gigascience, 2017.; B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, "Visualization of signi cant ERD/ERS patterns in multichannel EEG and ECoG data," Clinical neurophysiology, vol. 113, no. 1, pp. 43-47, 2002.; V. Carmen, S. T. H, and S. Alois, "BioSig: the free and open source software library for biomedical signal processing," Computational intelligence and neuroscience, vol. 2011, 2011.; B. Z. Allison and C. Neuper, "Could anyone use a bci?" in Brain-computer interfaces, D. S. Tan and A. Nijholt, Eds. Springer, 2010, pp. 35-54.; A. J. Brockmeier, "Learning and exploiting recurrent patterns in neural data," Ph.D. dissertation, Citeseer, 2014.; H. Ghaheri and A. Ahmadyfard, "Extracting common spatial patterns from eeg time segments for classifying motor imagery classes in a brain computer interface (bci)," scientiairanica, vol. 20, no. 6, pp. 2061-2072, 2013.; Z. Catharina, D. Stefan, K. Cornelia, B. Martin, G. Ingmar, and D. V. Maarten, "Real-time EEG feedback during simultaneous EEG-fMRI identifi es the cortical signature of motor imagery," Neuroimage, vol. 114, pp. 438-447, 2015.; I. Daly, S. J. Nasuto, and K. Warwick, "Brain computer interface control via functional connectivity dynamics," Pattern recognition, vol. 45, no. 6, pp. 2123{2136, 2012.; E. W. Lang, A. M. Tome, I. R. Keck, J. Gorriz-Saez, and C. G. Puntonet, "Brain connectivity analysis: a short survey," Computational intelligence and neuroscience, vol. 2012, p. 8, 2012.; J. Padilla-Buritica, J. Hurtado, and G. Castellanos-Dominguez, "Supervised piecewise network connectivity analysis for enhanced confi dence of auditory oddball tasks," Biomedical Signal Processing and Control, vol. 52, pp. 341-346, 2019.; R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, "Fieldtrip: open source software for advanced analysis of meg, eeg, and invasive electrophysiological data," Computational intelligence and neuroscience, vol. 2011, 2011.; M. P. Van Den Heuvel and H. E. H. Pol, "Exploring the brain network: a review on resting-state fMRI functional connectivity," European neuropsychopharmacology, vol. 20, no. 8, pp. 519-534, 2010.; T. Hanakawa, M. A. Dimyan, and M. Hallett, Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI," Cerebral cortex, vol. 18, no. 12, pp. 2775-2788, 2008.; K. Kasahara, C. S. DaSalla, M. Honda, and T. Hanakawa, "Neuroanatomical correlates of brain-computer interface performance," Neuroimage, vol. 110, pp. 95-100, 2015.; R. Scherer and C. Vidaurre, "Motor imagery based brain{computer interfaces," in Smart Wheelchairs and Brain-Computer Interfaces, P. Diez, Ed. Elsevier, 2018, pp. 171-195.; K. Y. Haaland, C. L. Elsinger, A. R. Mayer, S. Durgerian, and S. M. Rao, "Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization," Journal of Cognitive Neuroscience, vol. 16, no. 4, pp. 621-636, 2004.; G. Pfurtscheller, C. Neuper, K. Pichler-Zalaudek, G. Edlinger, and F. H. L. da Silva, "Do brain oscillations of different frequencies indicate interaction between cortical areas in humans?" Neuroscience letters, vol. 286, no. 1, pp. 66-68, 2000.; J. Lu, D. McFarland, and J. Wolpaw, "Adaptive laplacian filtering for sensorimotor rhythm-based brain-computer interfaces," Journal of neural engineering, vol. 10, no. 1, p. 016002, 2012.; Y. Zhang, C. S. Nam, G. Zhou, J. Jin, X. Wang, and A. Cichocki, "Temporally constrained sparse group spatial patterns for motor imagery bci," IEEE transactions on cybernetics, vol. 49, no. 9, pp. 3322-3332, 2018.; C.-F. V. Latchoumane, D. Chung, S. Kim, and J. Jeong, "Segmentation and characterization of eeg during mental tasks using dynamical nonstationarity," Proc. Computational Intelligence in Medical and Healthcare (CIMED 2007), Plymouth, England, 2007.; M. Ma, L. Guo, K. Su, and D. Liang, "Classi cation of motor imagery eeg signals based on wavelet transform and sample entropy," in 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), March 2017, pp. 905-910.; M. Ahn, H. n. Cho, S. Ahn, and S. Jun, "High theta and low alpha powers may be indicative of bci-illiteracy in motor imagery," PloS one, vol. 8, no. 11, 2013.; D. Collazos-Huertas, J. Caicedo-Acosta, G. A. Casta~no-Duque, and C. D. AcostaMedina, "Enhanced multiple instance representation using time-frequency atoms in motor imagery classi cation," Frontiers in neuroscience, vol. 14, p. 155, 2020.; G. Pfurtscheller, "Eeg event-related desynchronization (erd) and synchronization (ers)," Electroencephalography and Clinical Neurophysiology, vol. 1, no. 103, p. 26, 1997.; L. F. Velasquez-Martinez, F. Zapata-Casta~no, J. I. Padilla-Buritica, J. M. F. Vicente, and G. Castellanos-Dominguez, "Group differences in time-frequency relevant patterns for user-independent BCI applications," in International Work-Conference on the Interplay Between Natural and Arti ficial Computation, 2019, pp. 138-145.; E. Maris and R. Oostenveld, "Nonparametric statistical testing of eeg-and megdata," Journal of neuroscience methods, vol. 164, no. 1, pp. 177-190, 2007.; R. Giusti and G. E. Batista, "An empirical comparison of dissimilarity measures for time series classi cation," in 2013 Brazilian Conference on Intelligent Systems. IEEE, 2013, pp. 82-88.; I. Xygonakis, A. Athanasiou, N. Pandria, D. Kugiumtzis, and P. D. Bamidis, "Decoding motor imagery through common spatial pattern filters at the eeg source space," Computational intelligence and neuroscience, vol. 2018, 2018.; M. Matsuo, N. Iso, K. Fujiwara, T. Moriuchi, G. Tanaka, S. Honda, D. Matsuda, and T. Higashi, "Cerebral haemodynamics during motor imagery of self-feeding with chopsticks: differences between dominant and non-dominant hand," Somatosensory & Motor Research, vol. 37, no. 1, pp. 6{-3, 2020.; Y. Tian, W. Xu, and L. Yang, "Cortical classifi cation with rhythm entropy for error processing in cocktail party environment based on scalp eeg recording," Scienti c reports, vol. 8, no. 1, pp. 1-13, 2018.; B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller, "Optimizing spatial filters for robust eeg single-trial analysis," IEEE Signal processing magazine, vol. 25, no. 1, pp. 41-56, 2007.; F. Kaffashi, R. Foglyano, C. Wilson, and K. Loparo, "The effect of time delay on approximate and sample entropy calculations," Physica D: Nonlinear Phenomena, vol. 237, pp. 3069-3074, 2008.; C. Neuper and G. Pfurtscheller, "Event-related dynamics of cortical rhythms: frequency-specifi c features and functional correlates," International journal of psychophysiology, vol. 43, no. 1, pp. 41-58, 2001.; Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, "Optimizing spatial patterns with sparse filter bands for motor-imagery based brain{computer interface," Journal of neuroscience methods, vol. 255, pp. 85-91, 2015.; M. Miao, A. Wang, and F. Liu, "A spatial-frequency-temporal optimized feature sparse representation-based classifi cation method for motor imagery eeg pattern recognition," Medical & biological engineering & computing, vol. 55, no. 9, pp. 1589- 1603, 2017.; J. Meng and B. He, "Exploring training effect in 42 human subjects using a noninvasive sensorimotor rhythm based online bci," Frontiers in human neuroscience, vol. 13, p. 128, 2019.; X. Shu, S. Chen, L. Yao, X. Sheng, D. Zhang, N. Jiang, J. Jia, and X. Zhu, "Fast recognition of bci-ine cient users using physiological features from eeg signals: A screening study of stroke patients," Frontiers in neuroscience, vol. 12, p. 93, 2018.; https://repositorio.unal.edu.co/handle/unal/84556Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  5. 5
    رسالة جامعية
  6. 6
    رسالة جامعية
  7. 7
    رسالة جامعية

    المؤلفون: Rimbert, Sébastien

    المساهمون: Analysis and modeling of neural systems by a system neuroscience approach (NEUROSYS), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, Axel Hutt

    المصدر: https://hal.univ-lorraine.fr/tel-02949285Test ; Informatique [cs]. Université de Lorraine, 2020. Français. ⟨NNT : 2020LORR0056⟩.

  8. 8
    رسالة جامعية
  9. 9
    رسالة جامعية

    المؤلفون: Halme, Hanna-Leena

    المساهمون: Parkkonen, Lauri, Prof., Aalto University School of Science, Department of Neuroscience and Biomedical Engineering, Finland, Perustieteiden korkeakoulu, School of Science, Neurotieteen ja lääketieteellisen tekniikan laitos, Department of Neuroscience and Biomedical Engineering, Aalto-yliopisto, Aalto University

    وصف الملف: application/pdf

    العلاقة: Aalto University publication series DOCTORAL THESES; 164/2022; [Publication 1]: Hanna-Leena Halme, Lauri Parkkonen. Comparing Features for Classification of MEG Responses to Motor Imagery. PLOS ONE, 11(12):e0168766, 12 2016. DOI:10.1371/journal.pone.0168766; [Publication 2]: Hanna-Leena Halme, Lauri Parkkonen. Across-subject offline decoding of motor imagery from MEG and EEG. Scientific Reports, 07 2018. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-201808014095Test. DOI:10.1038/s41598-018-28295-z; [Publication 3]: Hanna-Leena Halme, Lauri Parkkonen. The effect of visual and proprioceptive feedback on sensorimotor rhythms during BCI training. PLOS ONE, 17(2): e0264354, 02 2022. DOI:10.1371/journal.pone.0264354; 1799-4942 (electronic); 1799-4934 (printed); 1799-4934 (ISSN-L); https://aaltodoc.aalto.fi/handle/123456789/117740Test; URN:ISBN:978-952-64-1015-9

  10. 10
    رسالة جامعية

    المؤلفون: Ailsworth, James William Jr.

    مرشدي الرسالة: Mechanical Engineering, Kurdila, Andrew J., Leonessa, Alexander, Batra, Dhruv

    وصف الملف: ETD; application/pdf