دورية أكاديمية

Review of fire experiments in mass timber compartments: Current understanding, limitations, and research gaps.

التفاصيل البيبلوغرافية
العنوان: Review of fire experiments in mass timber compartments: Current understanding, limitations, and research gaps.
المؤلفون: Mitchell, Harry, Kotsovinos, Panagiotis, Richter, Franz, Thomson, Daniel, Barber, David, Rein, Guillermo
المصدر: Fire & Materials; Jun2023, Vol. 47 Issue 4, p415-432, 18p
مصطلحات موضوعية: EVIDENCE gaps, SKYSCRAPERS, HEAT release rates, TIMBER, FIRE management, SCIENTIFIC literature, FIRE testing, WOODEN-frame buildings
مستخلص: The use of mass timber in buildings instead of non‐combustible materials has benefits in sustainability, aesthetics, construction times, and costs. However, the uptake of mass timber in modern construction for medium and high‐rise buildings is currently hindered by uncertainty regarding safety and structural performance in fire. We attribute this to a lack of data. Insufficient understanding means that for building designs beyond the current range of experiments the fire performance is unknown. To address this uncertainty, we review the available data in the scientific literature from 63 compartment fire experiments with timber, the majority of which use cross‐laminated timber (CLT). We found that most experiments reached temperatures 80–180°C greater than in non‐combustible compartments. Timber ceilings have on average a 16% lower char rate than timber walls. The heat release rate contribution of timber has a positive linear relationship with charring rate, however is susceptible to significant uncertainty and variability. There are limits to the data available, particularly in large open‐plan compartments of floor areas larger than 100 m2 where a wider range of heating conditions occur. Other topics where further understanding is required are compartments with exposed timber areas greater than 75%, compartments with smaller opening areas, and the hazard of smouldering following the flames. Therefore, additional research is needed to design beyond the limits, specifically in compartment size, ventilation, and timber exposure. This paper identifies correlations in the current body of experimental research to improve fire‐safe design of timber buildings. [ABSTRACT FROM AUTHOR]
Copyright of Fire & Materials is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index