يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"Motor Imagery"', وقت الاستعلام: 1.48s تنقيح النتائج
  1. 1
    رسالة جامعية

    المساهمون: Castellanos Dominguez, Cesar Germán, Grupo de Control y Procesamiento Digital de Señales, https://scholar.google.com.co/citations?user=kzOD4RQAAAAJ&hl=enTest

    وصف الملف: xii, 77 páginas; application/pdf

    العلاقة: B. Babadi, "Neural encoding and decoding," Handbook of Neuroengineering, pp. 1-24, 2020.; A. Singh, A. A. Hussain, S. Lal, and H. W. Guesgen, \A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface," Sensors, vol. 21, no. 6, p. 2173, 2021.; A. M. Alvarez-Meza, L. F. Velasquez-Martinez, and G. Castellanos-Dominguez, "Time-series discrimination using feature relevance analysis in motor imagery classi cation," Neurocomputing, vol. 151, pp. 122-129, 2015.; Y. K. Stolbkov, T. R. Moshonkina, I. V. Orlov, E. S. Tomilovskaya, I. B. Kozlovskaya, and Y. P. Gerasimenko, "The neurophysiological correlates of real and imaginary locomotion," Human Physiology, vol. 45, no. 1, pp. 104-114, 2019.; B. Fadlallah, S. Seth, A. Keil, and J. Principe, "Quantifying cognitive state from eeg using dependence measures," IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp. 2773-2781, 2012.; Z. Chen, "A primer on neural signal processing," IEEE Circuits and Systems Magazine, vol. 17, no. 1, pp. 33-50, 2017; S. N. Abdulkader, A. Atia, and M.-S. M. Mostafa, "Brain-computer interfacing: Applications and challenges," Egyptian Informatics Journal, vol. 16, no. 2, pp. 213-230, 2015.; M. W. Woolrich, A. Baker, H. Luckhoo, H. Mohseni, G. Barnes, M. Brookes, and I. Rezek, "Dynamic state allocation for meg source reconstruction," Neuroimage, vol. 77, pp. 77-92, 2013.; C. Guerrero-Mosquera and A. Navia-Vazquez, "Automatic removal of ocular artefacts using adaptive filtering and independent component analysis for electroencephalogram data," IET signal processing, vol. 6, no. 2, pp. 99-106, 2012.; M. Saeidi, W. Karwowski, F. V. Farahani, K. Fiok, R. Taiar, P. Hancock, and A. AlJuaid, "Neural decoding of eeg signals with machine learning: a systematic review," Brain Sciences, vol. 11, no. 11, p. 1525, 2021.; D. R. Ripoll, "Introducción a la organización del sistema nervioso," in Neurociencia cognitiva. Editorial Médica Panamericana, 2013, pp. 67-110.; Y.-H. Liu, L.-F. Lin, C.-W. Chou, Y. Chang, Y.-T. Hsiao, and W.-C. Hsu, "Analysis of electroencephalography event-related desynchronisation and synchronisation induced by lower-limb stepping motor imagery," Journal of Medical and Biological Engineering, vol. 39, no. 1, pp. 54-69, 2019.; G. Rodríguez-Bermúdez and P. J. Garcíaa-Laencina, "Automatic and adaptive classi cation of electroencephalographic signals for brain-computer interfaces," Journal of medical systems, vol. 36, no. 1, pp. 51-63, 2012.; S. Lemm, B. Blankertz, T. Dickhaus, and K.-R. M uller, "Introduction to machine learning for brain imaging," Neuroimage, vol. 56, no. 2, pp. 387-399, 2011.; E. Opsommer, O. Chevalley, and N. Korogod, "Motor imagery for pain and motor function after spinal cord injury: a systematic review," Spinal Cord, vol. 58, pp. 262-274, 2019.; T. Machado, A. Carregosa, M. Santos, N. da Silva, and M. Melo, "E cacy of motor imagery additional to motor-based therapy in the recovery of motor function of the upper limb in post-stroke individuals: a systematic review," Topics in Stroke Rehabilitation, vol. 26, no. 7, pp. 548-553, 2019.; G. Aymeric and D. Ursula, \Bene ts of motor imagery for human space flight: A brief review of current knowledge and future applications," Frontiers in Physiology, no. 10, p. 396, 2019.; P. Barhoun, I. Fuelscher, E. Kothe, J. He, G. Youssef, P. Enticott, J. Williams, and C. Hyde, "Motor imagery in children with dcd: A systematic and meta-analytic review of hand-rotation task performance," Neuroscience & Biobehavioral Reviews, vol. 99, pp. 282-297, 2019.; V. Nicholson, N. Watts, Y. Chani, and J. Keogh, "Motor imagery training improves balance and mobility outcomes in older adults: a systematic review," Journal of Physiotherapy, vol. 65, no. 4, pp. 200 - 207, 2019.; T. MacIntyre, M. A. Madan, C, C. Collet, and A. Guillot, "Motor imagery, performance and motor rehabilitation," vol. 240, pp. 141-159, 2018.; S. G. Boe and S. N. Kraeutner, "Assessing motor imagery ability through imagery-based learning: An overview and introduction to miscreen, a mobile app for imagery assessment," Imagination, Cognition and Personality, vol. 37, no. 4, pp. 430-447, 2018.; Z. Suica, P. Platteau-Waldmeier, S. Koppel, A. Schmidt-Trucksaess, T. Ettlin, and C. Schuster-Amft, "Motor imagery ability assessments in four disciplines: protocol for a systematic review," BMJ Open, vol. 8, no. 12, 2018.; L. Power, H. F. Neyedli, S. G. Boe, and T. Bardouille, "E cacy of low-cost wireless neurofeedback to modulate brain activity during motor imagery," Biomedical Physics & Engineering Express, vol. 6, no. 3, p. 035024, 2020.; N. Tiwari, D. R. Edla, S. Dodia, and A. Bablani, "Brain computer interface: A comprehensive survey," Biologically Inspired Cognitive Architectures, vol. 26, pp. 118-129, 2018.; M. Z. Baig, N. Aslam, and H. P. H. Shum, "Filtering techniques for channel selection in motor imagery EEG applications: a survey," Arti cial Intelligence Review, pp. 1-26, 2019.; M. L. Stavrinou, L. Moraru, L. Cimponeriu, S. Della Penna, and A. Bezerianos, "Evaluation of cortical connectivity during real and imagined rhythmic nger tapping," Brain Topography, vol. 19, no. 3, pp. 137-145, 2007.; L. S. Imperatori, M. Betta, L. Cecchetti, A. Canales-Johnson, E. Ricciardi, F. Siclari, P. Pietrini, S. Chennu, and G. Bernardi, "Eeg functional connectivity metrics wpli and wsmi account for distinct types of brain functional interactions," Scienti c reports, vol. 9, no. 1, pp. 1-15, 2019.; B. Juan, E. Santiago, B.-M. Arturo, N. Marius, B. Javier, F. Eduardo, S. Surjo, and G.-A. Nicolas, "Synchronization of slow cortical rhythms during motor imagery-based brain-machine interface control," International Journal of neural systems, vol. 29, no. 5, p. 1850045, 2019.; P. Wierzga la, D. Zapa la, G. M. Wojcik, and J. Masiak, "Most popular signal processing methods in motor-imagery bci: a review and meta-analysis," Frontiers in neuroinformatics, vol. 12, p. 78, 2018.; E. Friedrich, R. Scherer, and C. Neuper, "Stability of event-related (de-) synchronization during brain-computer interface-relevant mental tasks," Clinical Neurophysiology, vol. 124, no. 1, pp. 61-69, 2013.; P. K. Pattnaik and J. Sarraf, "Brain computer interface issues on hand movement," Computer and Information Sciences, vol. 30, no. 1, pp. 18-24, 2018.; Y. Park and W. Chung, "Frequency-optimized local region common spatial pattern approach for motor imagery classi cation," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 7, pp. 1378-1388, 2019.; S. Saha, K. I. U. Ahmed, R. Mostafa, L. Hadjileontiadis, and A. Khandoker, "Evidence of variabilities in EEG dynamics during motor imagery-based multiclass brain-computer interface," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 2, pp. 371-382, 2018.; M. Ahn and S. C. Jun, "Performance variation in motor imagery brain-computer interface: a brief review," Journal of neuroscience methods, vol. 243, pp. 103-110, 2015.; C. Jeunet, S. Debener, F. Lotte, J. Mattout, R. Scherer, and C. Zich, "Mind the traps! design guidelines for rigorous BCI experiments," in Brain-Computer Interfaces Handbook. CRC Press, 2018, pp. 639-660.; M. C. Thompson, "Critiquing the concept of bci illiteracy," Science and engineering ethics, vol. 25, no. 4, pp. 1217-1233, 2019.; T. Liu, G. Huang, N. Jiang, L. Yao, and Z. Zhang, "Reduce brain computer interface ine ciency by combining sensory motor rhythm and movement-related cortical potential features," Journal of neural engineering, vol. 17, no. 3, p. 035003, 2020.; P. Durka, D. Ircha, C. Neuper, and G. Pfurtscheller, "Time-frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation," Medical & biological engineering & computing, vol. 39, pp. 315-321, 2001.; R. Grandchamp and A. Delorme, "Single-trial normalization for event-related spectral decomposition reduces sensitivity to noisy trials," Frontiers in Psychology, vol. 2, p. 236, 2011.; H. Yuan and B. He, "Brain{computer interfaces using sensorimotor rhythms: current state and future perspectives," IEEE Transactions on Biomedical Engineering, vol. 61, no. 5, pp. 1425-1435, 2014.; X. Tang, W. Li, X. Li, W. Ma, and X. Dang, "Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network," Expert Systems with Applications, vol. 149, p. 113285, 2020.; L. Gao, J. Wang, and L. Chen, "Event-related desynchronization and synchronization quanti cation in motor-related eeg by kolmogorov entropy," Journal of neural engineering, vol. 10, no. 3, p. 036023, 2013.; H. Azami, P. Li, S. Arnold, J. Escudero, and A. Humeau-Heurtier, "Fuzzy entropy metrics for the analysis of biomedical signals: Assessment and comparison," IEEE Access, vol. 7, pp. 104 833-104 847, 2019.; W.-Y. Hsu, "Assembling a multi-feature EEG classifier for left-right motor imagery data using wavelet-based fuzzy approximate entropy for improved accuracy," International journal of neural systems, vol. 25 8, p. 1550037, 2015.; C. Shunfei, L. Zhizeng, and G. Haitao, "An entropy fusion method for feature extraction of EEG," Neural Computing and Applications, vol. 29, pp. 857-863, 2016.; P. Sri, K. Yashasvi, A. Anjum, A. Bhattacharyya, and R. Pachori, "Development of an Efective Computing Framework for Classi cation of Motor Imagery EEG Signals for Brain-Computer Interface". Singapore: Springer Singapore, 2020, pp. 17-35.; M. Rostaghi and H. Azami, "Dispersion entropy: A measure for time-series analysis," IEEE Signal Processing Letters, vol. 23, pp. 610-614, 2016.; K. Kuntzelman, L. Rhodes, L. Harrington, and V. Miskovic, "A practical comparison of algorithms for the measurement of multiscale entropy in neural time series data," Brain and Cognition, vol. 123, pp. 126-135, 2018.; Y. Li, X. Gao, and Wang.L, "Reverse dispersion entropy: A new complexity measure for sensor signal," Sensors (Basel, Switzerland), vol. 19, 2019.; E. Kafantaris, I. Piper, M. Lo, and J. Escudero, "Augmentation of dispersion entropy for handling missing and outlier samples in physiological signal monitoring," Entropy, no. 319, pp. 1-26, 2020.; E. Pitsik, N. Frolov, K. Hauke, V. Grubov, V. Maksimenko, J. Kurths, and A. Hramov, "Motor execution reduces eeg signals complexity: Recurrence quanti cation analysis study," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, no. 2, p. 023111, 2020.; M. Miao, H. Zeng, A. Wang, C. Zhao, and F. Liu, \Discriminative spatial-frequency-temporal feature extraction and classi cation of motor imagery EEG: An sparse regression and weighted naïve bayesian classi fier-based approach," Journal of neuroscience methods, vol. 278, pp. 13-24, 2017.; N. Bigdely-Shamlo, G. Ibagon, C. Kothe, and T. Mullen, "Finding the optimal cross-subject EEG data alignment method for analysis and BCI," in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, pp. 1110-1115.; S. Fazli, S. Dähne, W. Samek, F. Biebmann, and K. Müller, "Learning from more than one data source: Data fusion techniques for sensorimotor rhythm-based brain-computer interfaces," Proceedings of the IEEE, vol. 103, no. 6, pp. 891-906, 2015.; G. Lio and P. Boulinguez, "How does sensor-space group blind source separation face inter-individual neuroanatomical variability? insights from a simulation study based on the PALS-B12 atlas," Brain Topography, vol. 31, pp. 62-75, 2016.; X. Gong, L. Mao, Y. Liu, and Q. Lin, "A jacobi generalized orthogonal joint diagonalization algorithm for joint blind source separation," IEEE Access, vol. 6, pp. 38 464{38 474, 2018.; Y. Zhang, C. S. Nam, G. Zhou, J. Jin, X. Wang, and A. Cichocki, "Temporally constrained sparse group spatial patterns for motor imagery BCI," IEEE Transactions on Cybernetics, vol. 49, no. 9, pp. 3322-3332, 2019; A. de Cheveigné, G. M. D. Liberto, D. Arzounian, D. D. Wong, J. Hjortkjaer, S. Fuglsang, and L. C. Parra, "Multiway canonical correlation analysis of brain data," NeuroImage, vol. 186, pp. 728-740, 2019.; R. J. Huster and L. Raud, "A tutorial review on multi-subject decomposition of eeg," Brain topography, vol. 31, no. 1, pp. 3-16, 2018.; D. K. Emge, F.-B. Vialatte, G. Dreyfus, and T. Adali, "Independent vector analysis for SSVEP signal enhancement, detection, and topographical mapping," Brain Topography, vol. 31, no. 1, pp. 117-124, 2018.; S. Bhinge, R. Mowakeaa, V. D. Calhoun, and T. Adali, "Extraction of time-varying spatiotemporal networks using parameter-tuned constrained iva," IEEE transactions on medical imaging, vol. 38, no. 7, pp. 1715-1725, 2019.; D. A. Bridwell, J. F. Cavanagh, A. G. E. Collins, M. D. Nunez, R. Srinivasan, S. Stober, and V. D. Calhoun, "Moving beyond ERP components: A selective review of approaches to integrate EEG and behavior," Frontiers in Human Neuroscience, vol. 12, p. 106, 2018; N. Kriegeskorte, M. Mur, and P. Bandettini, "Representational similarity analysis -connecting the branches of systems neuroscience," Frontiers in Systems Neuroscience, vol. 2, p. 4, 2008.; Muller, Vidaurre, Schreuder, Meinecke, M. Bunau, J. Muller, C. Vidaurre, M. Schreuder, F. Meinecke, P. Bunau, and K. Muller, 2017.; A. Singh, S. Lal, and H. W. Guesgen, "Architectural review of co-adaptive brain computer interface," in 2017 4th Asia-Paci c World Congress on Computer Science and Engineering (APWC on CSE). IEEE, 2017, pp. 200-207.; A. Abu-Rmileh, E. Zakkay, L. Shmuelof, and O. Shriki, "Co-adaptive training improves e cacy of a multi-day eeg-based motor imagery bci training," Frontiers in Human Neuroscience, vol. 13, p. 362, 2019.; L. M. Alonso-Valerdi, "Python executable script for estimating two effective parameters to individualize brain-computer interfaces: Individual alpha frequency and neurophysiological predictor," Frontiers in neuroinformatics, vol. 10, p. 22, 2016.; N. S. E. M. Noor and H. Ibrahim, "Machine learning algorithms and quantitative electroencephalography predictors for outcome prediction in traumatic brain injury: A systematic review," IEEE Access, vol. 8, pp. 102 075-102 092, 2020.; L. A. Weber, T. Ethofer, and A.-C. Ehlis, "Predictors of neurofeedback training outcome: A systematic review," NeuroImage: Clinical, vol. 27, p. 102301, 2020.; M. Vukelic and A. Gharabaghi, "Self-regulation of circumscribed brain activity modulates spatially selective and frequency speci fic connectivity of distributed resting state networks," Frontiers in behavioral neuroscience, vol. 9, p. 181, 2015.; M. Ahn, H. Cho, S. Ahn, and S. C. Jun, \High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery," PloS one, vol. 8, no. 11, p. e80886, 2013.; A. Bamdadian, C. Guan, K. K. Ang, and J. Xu, "The predictive role of pre-cue eeg rhythms on mi-based bci classi cation performance," Journal of neuroscience methods, vol. 235, pp. 138-144, 2014.; Acqualagna, Laura and Botrel, Loic and Vidaurre, Carmen and Kübler, Andrea and Blankertz, Benjamin, "Large-scale assessment of a fully automatic co-adaptive motor imagery-based brain-computer interface", PLoS ONE bf, 2016, pp. 1-19.; W. Samek, C. Vidaurre, K.-R. Müller, and M. Kawanabe, "Stationary common spatial patterns for brain{computer interfacing," Journal of neural engineering, vol. 9, no. 2, p. 026013, 2012.; Kwon, Cho, A. Won, M. Jun, A. Ahn, "Use of both eyes-open and eyes-closed resting states may yield a more robust predictor of motor imagery BCI performance," Electronics MDPI, vol. 9, p. 690, 2020.; N. Wan, Vai, F. Rosa, "Resting alpha activity predicts learning ability in alpha neurofeedback," Frontiers in human neuroscience, vol. 8, p. 500, 2014.; Solesio-Jofre, Beets, Woolley, Pauwels, M. Chalavi, "Age-dependent modulations of resting state connectivity following motor practice," vol. 10, p. 25, 2018.; Corsi, Chavez, Schwartz, George, Hugueville, Kahn, Dupont, Bassett, M. de Vico Fallani, "Functional disconnection of associative cortical areas predicts performance during BCI training," NeuroImage, vol. 209, p. 116500, 2020.; C. A. Stefano Filho, T. B. d. S. Costa, L. Uribe, P. Rodrigues, D. Soriano, R. Attux, and G. Castellano, "On the (in) e cacy of motor imagery training without feedback and event-related desynchronizations considerations," Biomedical Physics & Engineering Express, vol. 6, no. 3, p. 035030, 2020.; W. Daeglau, Debener, K. Condro, M. Daeglau, F. Wallhoff, S. Debener, I. Condro, C. Kranczioch, and C. Zich, "Challenge accepted? individual performance gains for motor imagery practice with humanoid robotic EEG neurofeedback," Sensors, vol. 20, p. 1620, 2020.; L. Velasquez-Martinez, J. Caicedo-Acosta, and G. Castellanos-Dominguez, "Entropy-based estimation of event-related de/synchronization in motor imagery using vector-quantized patterns," Entropy, vol. 22, no. 6, p. 703, 2020.; P. Chholak, M. Kurkin, P. Hramov, "Phase-amplitude coupling between mu and gamma-waves to carry motor commands," in Proceedings of the 2019 3rd School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), Innopolis, Russia, pp. 39-45 , 2019.; B. Kim and C. Winstein, "Can neurological biomarkers of brain impairment be used to predict poststroke motor recovery? A systematic review," Neurorehabilitation and neural repair, vol 31, pp. 3-24, 2017.; J. Yperman, T. Becker, D. Valkenborg, V. Popescu, N. Hellings, B. V. Wijmeersch, and L. M. Peeters, "Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis," BMC neurology, vol. 20, no. 1, pp. 1-15, 2020.; L. D. Fiederer, M. V olker, R. T. Schirrmeister, W. Burgard, J. Boedecker, and T. Ball, "Hybrid brain-computer-interfacing for human-compliant robots: inferring continuous subjective ratings with deep regression," Frontiers in Neurorobotics, vol. 13, p. 76, 2019.; A. H. Shahid and M. P. Singh, "A deep learning approach for prediction of parkinson's disease progression," Biomedical Engineering Letters, vol. 10, no. 2, pp. 227-239, 2020.; Pandey, K. Pandey, and R. Janghel, "Recent deep learning techniques, challenges and its applications for medical healthcare system: a review," Neural Processing Letters, vol. 50, pp. 1907-1935, 2019.; A. S. Aghaei, M. S. Mahanta, and K. N. Plataniotis, "Separable common spatiospectral patterns for motor imagery BCI systems," IEEE Transactions on Biomedical Engineering, vol. 63, no. 1, pp. 15-29, 2016.; S. Brandl, K. Muller, and W. Samek, "Alternative CSP approaches for multimodal distributed BCI data," in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016, pp. 003 742-003 747.; A. M. Bastos and J.-M. Schoffelen, "A tutorial review of functional connectivity analysis methods and their interpretational pitfalls," Frontiers in Systems Neuroscience, vol. 9, p. 175, 2016.; S. Dai and Q. Wei, "Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces," Journal of integrative neuroscience, vol. 16, no. 3, pp. 241-254, 2017.; C. Sannelli, C. Vidaurre, K. Müller, and B. Blankertz, "Common spatial pattern patches-an optimized filter ensemble for adaptive brain-computer interfaces," in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, 2010, pp. 4351-4354.; A. Delgado-Bonal and A. Marshak, "Approximate entropy and sample entropy: A comprehensive tutorial," Entropy, vol. 21, p. 541, 2019.; T. Nguyen and T. Nguyen, "Entropy-constrained maximizing mutual information quantization," ArXiv, 2020.; S. Zhao, B. Chen, P. Zhu, and J. Principe, \Fixed budget quantized kernel least mean-square algorithm," Signal Processing, vol. 93, no. 9, pp. 2759-2770, 2013.; D. Cardenas-Pena, A. Tobar-Rodriguez, and G. Castellanos-Dominguez, "Adaptive Bayesian label fusion using kernel-based similarity metrics in hippocampus segmentation," Journal of Medical Imaging, vol. 6, no. 1, pp. 1 - 8, 2019.; J. I. Padilla-Buritica, J. M. Ferrandez-Vicente, G. A. Castaño, and C. D. AcostaMedina, "Non-stationary group-level connectivity analysis for enhanced interpretability of oddball tasks," Frontiers in Neuroscience, 2020.; K. Mikalsen, F. M. Bianchi, C. Soguero-Ruiz, and R. Jenssen, "Time series cluster kernel for learning similarities between multivariate time series with missing data," Pattern Recognition, vol. 76, pp. 569-581, 2018.; B. Blankertz, C. Sannelli, S. Halder, E. M. Hammer, A. Kübler, K.-R. Müller, G. Curio, and T. Dickhaus, "Neurophysiological predictor of smr-based bci performance," Neuroimage, vol. 51, no. 4, pp. 1303-1309, 2010; M. K. I. Molla, A. Al Shiam, M. R. Islam, and T. Tanaka, "Discriminative feature selection-based motor imagery classi cation using eeg signal," IEEE Access, vol. 8, pp. 98 255-98 265, 2020; G. Pfurtscheller and F. L. Da Silva, "Event-related eeg/meg synchronization and desynchronization: basic principles," Clinical neurophysiology, vol. 110, no. 11, pp. 1842-1857, 1999.; H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir et al., "Wide & deep learning for recommender systems," in Proceedings of the 1st workshop on deep learning for recommender systems, 2016, pp. 7-10.; P. Nagabushanam, S. Thomas George, and S. Radha, "Eeg signal classi cation using lstm and improved neural network algorithms," Soft Computing, vol. 24, no. 13, pp. 9981-10 003, 2020.; H. Cho, M. Ahn, S. Ahn, M. Kwon, and S. C. Jun, "Eeg datasets for motor imagery brain computer interface," Gigascience, 2017.; B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, "Visualization of signi cant ERD/ERS patterns in multichannel EEG and ECoG data," Clinical neurophysiology, vol. 113, no. 1, pp. 43-47, 2002.; V. Carmen, S. T. H, and S. Alois, "BioSig: the free and open source software library for biomedical signal processing," Computational intelligence and neuroscience, vol. 2011, 2011.; B. Z. Allison and C. Neuper, "Could anyone use a bci?" in Brain-computer interfaces, D. S. Tan and A. Nijholt, Eds. Springer, 2010, pp. 35-54.; A. J. Brockmeier, "Learning and exploiting recurrent patterns in neural data," Ph.D. dissertation, Citeseer, 2014.; H. Ghaheri and A. Ahmadyfard, "Extracting common spatial patterns from eeg time segments for classifying motor imagery classes in a brain computer interface (bci)," scientiairanica, vol. 20, no. 6, pp. 2061-2072, 2013.; Z. Catharina, D. Stefan, K. Cornelia, B. Martin, G. Ingmar, and D. V. Maarten, "Real-time EEG feedback during simultaneous EEG-fMRI identifi es the cortical signature of motor imagery," Neuroimage, vol. 114, pp. 438-447, 2015.; I. Daly, S. J. Nasuto, and K. Warwick, "Brain computer interface control via functional connectivity dynamics," Pattern recognition, vol. 45, no. 6, pp. 2123{2136, 2012.; E. W. Lang, A. M. Tome, I. R. Keck, J. Gorriz-Saez, and C. G. Puntonet, "Brain connectivity analysis: a short survey," Computational intelligence and neuroscience, vol. 2012, p. 8, 2012.; J. Padilla-Buritica, J. Hurtado, and G. Castellanos-Dominguez, "Supervised piecewise network connectivity analysis for enhanced confi dence of auditory oddball tasks," Biomedical Signal Processing and Control, vol. 52, pp. 341-346, 2019.; R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, "Fieldtrip: open source software for advanced analysis of meg, eeg, and invasive electrophysiological data," Computational intelligence and neuroscience, vol. 2011, 2011.; M. P. Van Den Heuvel and H. E. H. Pol, "Exploring the brain network: a review on resting-state fMRI functional connectivity," European neuropsychopharmacology, vol. 20, no. 8, pp. 519-534, 2010.; T. Hanakawa, M. A. Dimyan, and M. Hallett, Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI," Cerebral cortex, vol. 18, no. 12, pp. 2775-2788, 2008.; K. Kasahara, C. S. DaSalla, M. Honda, and T. Hanakawa, "Neuroanatomical correlates of brain-computer interface performance," Neuroimage, vol. 110, pp. 95-100, 2015.; R. Scherer and C. Vidaurre, "Motor imagery based brain{computer interfaces," in Smart Wheelchairs and Brain-Computer Interfaces, P. Diez, Ed. Elsevier, 2018, pp. 171-195.; K. Y. Haaland, C. L. Elsinger, A. R. Mayer, S. Durgerian, and S. M. Rao, "Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization," Journal of Cognitive Neuroscience, vol. 16, no. 4, pp. 621-636, 2004.; G. Pfurtscheller, C. Neuper, K. Pichler-Zalaudek, G. Edlinger, and F. H. L. da Silva, "Do brain oscillations of different frequencies indicate interaction between cortical areas in humans?" Neuroscience letters, vol. 286, no. 1, pp. 66-68, 2000.; J. Lu, D. McFarland, and J. Wolpaw, "Adaptive laplacian filtering for sensorimotor rhythm-based brain-computer interfaces," Journal of neural engineering, vol. 10, no. 1, p. 016002, 2012.; Y. Zhang, C. S. Nam, G. Zhou, J. Jin, X. Wang, and A. Cichocki, "Temporally constrained sparse group spatial patterns for motor imagery bci," IEEE transactions on cybernetics, vol. 49, no. 9, pp. 3322-3332, 2018.; C.-F. V. Latchoumane, D. Chung, S. Kim, and J. Jeong, "Segmentation and characterization of eeg during mental tasks using dynamical nonstationarity," Proc. Computational Intelligence in Medical and Healthcare (CIMED 2007), Plymouth, England, 2007.; M. Ma, L. Guo, K. Su, and D. Liang, "Classi cation of motor imagery eeg signals based on wavelet transform and sample entropy," in 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), March 2017, pp. 905-910.; M. Ahn, H. n. Cho, S. Ahn, and S. Jun, "High theta and low alpha powers may be indicative of bci-illiteracy in motor imagery," PloS one, vol. 8, no. 11, 2013.; D. Collazos-Huertas, J. Caicedo-Acosta, G. A. Casta~no-Duque, and C. D. AcostaMedina, "Enhanced multiple instance representation using time-frequency atoms in motor imagery classi cation," Frontiers in neuroscience, vol. 14, p. 155, 2020.; G. Pfurtscheller, "Eeg event-related desynchronization (erd) and synchronization (ers)," Electroencephalography and Clinical Neurophysiology, vol. 1, no. 103, p. 26, 1997.; L. F. Velasquez-Martinez, F. Zapata-Casta~no, J. I. Padilla-Buritica, J. M. F. Vicente, and G. Castellanos-Dominguez, "Group differences in time-frequency relevant patterns for user-independent BCI applications," in International Work-Conference on the Interplay Between Natural and Arti ficial Computation, 2019, pp. 138-145.; E. Maris and R. Oostenveld, "Nonparametric statistical testing of eeg-and megdata," Journal of neuroscience methods, vol. 164, no. 1, pp. 177-190, 2007.; R. Giusti and G. E. Batista, "An empirical comparison of dissimilarity measures for time series classi cation," in 2013 Brazilian Conference on Intelligent Systems. IEEE, 2013, pp. 82-88.; I. Xygonakis, A. Athanasiou, N. Pandria, D. Kugiumtzis, and P. D. Bamidis, "Decoding motor imagery through common spatial pattern filters at the eeg source space," Computational intelligence and neuroscience, vol. 2018, 2018.; M. Matsuo, N. Iso, K. Fujiwara, T. Moriuchi, G. Tanaka, S. Honda, D. Matsuda, and T. Higashi, "Cerebral haemodynamics during motor imagery of self-feeding with chopsticks: differences between dominant and non-dominant hand," Somatosensory & Motor Research, vol. 37, no. 1, pp. 6{-3, 2020.; Y. Tian, W. Xu, and L. Yang, "Cortical classifi cation with rhythm entropy for error processing in cocktail party environment based on scalp eeg recording," Scienti c reports, vol. 8, no. 1, pp. 1-13, 2018.; B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller, "Optimizing spatial filters for robust eeg single-trial analysis," IEEE Signal processing magazine, vol. 25, no. 1, pp. 41-56, 2007.; F. Kaffashi, R. Foglyano, C. Wilson, and K. Loparo, "The effect of time delay on approximate and sample entropy calculations," Physica D: Nonlinear Phenomena, vol. 237, pp. 3069-3074, 2008.; C. Neuper and G. Pfurtscheller, "Event-related dynamics of cortical rhythms: frequency-specifi c features and functional correlates," International journal of psychophysiology, vol. 43, no. 1, pp. 41-58, 2001.; Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, "Optimizing spatial patterns with sparse filter bands for motor-imagery based brain{computer interface," Journal of neuroscience methods, vol. 255, pp. 85-91, 2015.; M. Miao, A. Wang, and F. Liu, "A spatial-frequency-temporal optimized feature sparse representation-based classifi cation method for motor imagery eeg pattern recognition," Medical & biological engineering & computing, vol. 55, no. 9, pp. 1589- 1603, 2017.; J. Meng and B. He, "Exploring training effect in 42 human subjects using a noninvasive sensorimotor rhythm based online bci," Frontiers in human neuroscience, vol. 13, p. 128, 2019.; X. Shu, S. Chen, L. Yao, X. Sheng, D. Zhang, N. Jiang, J. Jia, and X. Zhu, "Fast recognition of bci-ine cient users using physiological features from eeg signals: A screening study of stroke patients," Frontiers in neuroscience, vol. 12, p. 93, 2018.; https://repositorio.unal.edu.co/handle/unal/84556Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  2. 2
    رسالة جامعية

    المؤلفون: Zapata Castaño, Frank Yesid

    المساهمون: Castellanos Domínguez, César Germán, Velásquez Martínez, Luisa Fernanda, Grupo de Control y Procesamiento Digital de Señales, Zapata Castaño, Frank Yesid 0000-0003-2214-3355, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000138411Test, https://www.researchgate.net/profile/F-Zapata-CastanoTest, https://scholar.google.com/citations?user=oNUg-cIAAAAJ&hl=es&authuser=1Test

    وصف الملف: xii, 62 páginas; application/pdf

    العلاقة: R. A. Ramadan and A. V. Vasilakos, “Brain computer interface: Control signals review,” Neurocomputing, vol. 223, pp. 26–44, 2017.; G. Arfaras, A. Athanasiou, N. Pandria, et al., “Visual versus kinesthetic motor im agery for bci control of robotic arms (mercury 2.0),” in 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), IEEE, 2017, pp. 440–445.; D. T. Bundy, L. Souders, K. Baranyai, et al., “Contralesional brain–computer inter face control of a powered exoskeleton for motor recovery in chronic stroke survivors,” Stroke, vol. 48, no. 7, pp. 1908–1915, 2017.; H. Cho, M. Ahn, S. Ahn, M. Kwon, and S. C. Jun, “Eeg datasets for motor imagery brain computer interface,” Gigascience, 2017.; H.-L. Halme and L. Parkkonen, “Across-subject offline decoding of motor imagery from meg and eeg,” Scientific reports, vol. 8, no. 1, pp. 1–12, 2018.; Y. He, M. Steines, J. Sommer, et al., “Spatial–temporal dynamics of gesture–speech integration: A simultaneous eeg-fmri study,” Brain Structure and Function, vol. 223, no. 7, pp. 3073–3089, 2018.; G. Pfurtscheller, C. Brunner, A. Schl¨ogl, and F. L. Da Silva, “Mu rhythm (de) synchronization and eeg single-trial classification of different motor imagery tasks,” NeuroImage, vol. 31, no. 1, pp. 153–159, 2006; Z. Dai, J. De Souza, J. Lim, et al., “Eeg cortical connectivity analysis of working memory reveals topological reorganization in theta and alpha bands,” Frontiers in human neuroscience, vol. 11, p. 237, 2017.; Z. Emami and T. Chau, “Investigating the effects of visual distractors on the per formance of a motor imagery brain-computer interface,” Clinical Neurophysiology, vol. 129, no. 6, pp. 1268–1275, 2018.; G. Pfurtscheller and F. L. Da Silva, “Event-related eeg/meg synchronization and desynchronization: Basic principles,” Clinical neurophysiology, vol. 110, no. 11, pp. 1842– 1857, 1999.; M. X. Cohen, “Using spatiotemporal source separation to identify prominent features in multichannel data without sinusoidal filters,” European Journal of Neuroscience, 2017.; I. Daly, S. J. Nasuto, and K. Warwick, “Brain computer interface control via func tional connectivity dynamics,” Pattern recognition, vol. 45, no. 6, pp. 2123–2136, 2012.; M. X. Cohen, Analyzing neural time series data: theory and practice. MIT press, 2014; S. Bhinge, R. Mowakeaa, V. D. Calhoun, and T. Adalı, “Extraction of time-varying spatiotemporal networks using parameter-tuned constrained iva,” IEEE transactions on medical imaging, vol. 38, no. 7, pp. 1715–1725, 2019.; B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, “Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data,” Clinical neu rophysiology, vol. 113, no. 1, pp. 43–47, 2002.; B. T´oth, K. Janacsek, A. Tak´acs, A. K´obor, Z. Zavecz, and D. Nemeth, “Dynamics ´ of eeg functional connectivity during statistical learning,” Neurobiology of Learning and Memory, vol. 144, pp. 216–229, 2017.; R. T. Canolty, E. Edwards, S. S. Dalal, et al., “High gamma power is phase-locked to theta oscillations in human neocortex,” science, vol. 313, no. 5793, pp. 1626–1628, 2006.; F. Shamsi, A. Haddad, and L. Najafizadeh, “Early classification of motor tasks using dynamic functional connectivity graphs from eeg,” Journal of neural engineering, vol. 18, no. 1, p. 016 015, 2021; H. Yu, S. Ba, Y. Guo, L. Guo, and G. Xu, “Effects of motor imagery tasks on brain functional networks based on eeg mu/beta rhythm,” Brain Sciences, vol. 12, no. 2, p. 194, 2022; J. R. Stieger, S. A. Engel, and B. He, “Continuous sensorimotor rhythm based brain computer interface learning in a large population,” Scientific Data, vol. 8, no. 1, pp. 1–10, 2021.; D. H. Mathalon and V. S. Sohal, “Neural oscillations and synchrony in brain dys function and neuropsychiatric disorders: It’s about time,” JAMA psychiatry, vol. 72, no. 8, pp. 840–844, 2015.; Y. Yang, S. Chevallier, J. Wiart, and I. Bloch, “Subject-specific time-frequency selection for multi-class motor imagery-based bcis using few laplacian eeg channels,” Biomedical Signal Processing and Control, vol. 38, pp. 302–311, 2017, issn: 1746- 8094. doi: https://doi.org/10.1016/j.bspc.2017.06.016Test.; Y. Bian, H. Qi, L. Zhao, D. Ming, T. Guo, and X. Fu, “Improvements in event-related desynchronization and classification performance of motor imagery using instruc tive dynamic guidance and complex tasks,” Computers in Biology and Medicine, vol. 96, pp. 266–273, 2018, issn: 0010-4825. doi: https://doi.org/10.1016/jTest. compbiomed.2018.03.018.; H. Yuan and B. He, “Brain–computer interfaces using sensorimotor rhythms: Cur rent state and future perspectives,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 5, pp. 1425–1435, 2014.; R. Grandchamp and A. Delorme, “Single-trial normalization for event-related spec tral decomposition reduces sensitivity to noisy trials,” Frontiers in psychology, vol. 2, p. 236, 2011.; A. J. Brockmeier, “Learning and exploiting recurrent patterns in neural data,” Ph.D. dissertation, University of Florida, 2014.; N. Bigdely-Shamlo, G. Ibagon, C. Kothe, and T. Mullen, “Finding the optimal cross subject eeg data alignment method for analysis and bci,” in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2018, pp. 1110–1115.; R. Labounek, D. A. Bridwell, R. Mareˇcek, et al., “Stable scalp eeg spatiospectral patterns across paradigms estimated by group ica,” Brain topography, vol. 31, no. 1, pp. 76–89, 2018.; D. A. Bridwell, J. F. Cavanagh, A. G. Collins, et al., “Moving beyond erp compo nents: A selective review of approaches to integrate eeg and behavior,” Frontiers in human neuroscience, vol. 12, p. 106, 2018; S. Brandl, K. Muller, and W. Samek, “Alternative CSP approaches for multimodal distributed BCI data,” in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016, pp. 003 742–003 747.; B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller, “Optimizing spatial filters for robust eeg single-trial analysis,” IEEE Signal processing magazine, vol. 25, no. 1, pp. 41–56, 2007.; K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, “Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b,” Frontiers in neuroscience, vol. 6, p. 39, 2012.; Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface,” Journal of neuroscience methods, vol. 255, pp. 85–91, 2015.; M. Miao, H. Zeng, A. Wang, C. Zhao, and F. Liu, “Discriminative spatial-frequency temporal feature extraction and classification of motor imagery eeg: An sparse regres sion and weighted na¨ıve bayesian classifier-based approach,” Journal of neuroscience methods, vol. 278, pp. 13–24, 2017.; R. Huster, S. M. Plis, and V. D. Calhoun, “Group-level component analyses of EEG: Validation and evaluation,” Frontiers in neuroscience, vol. 9, p. 254, 2015.; E. Allen, E. Damaraju, T. Eichele, L. Wu, and V. D. Calhoun, “EEG signatures of dynamic functional network connectivity states,” Brain topography, vol. 31, no. 1, pp. 101–116, 2018.; B. Blankertz, C. Sannelli, S. Halder, et al., “Neurophysiological predictor of smr based bci performance,” Neuroimage, vol. 51, no. 4, pp. 1303–1309, 2010.; E. E. Hagberg, R. Ackerley, D. Lundqvist, J. Schneiderman, V. Jousm¨aki, and J. Wessberg, “Spatio-temporal profile of brain activity during gentle touch investigated with magnetoencephalography,” NeuroImage, vol. 201, p. 116 024, 2019; S. P. Ahlfors, J. Han, J. W. Belliveau, and M. S. H¨am¨al¨ainen, “Sensitivity of meg and eeg to source orientation,” Brain topography, vol. 23, no. 3, pp. 227–232, 2010.; S. Yu, M. M¨uckschel, and C. Beste, “Event-related synchronization/desynchronization and functional neuroanatomical regions associated with fatigue effects on cognitive flexibility,” Journal of Neurophysiology, vol. 126, no. 2, pp. 383–397, 2021.; G. Pfurtscheller and A. Aranibar, “Event-related cortical desynchronization detected by power measurements of scalp eeg,” Electroencephalography and clinical neurophys iology, vol. 42, no. 6, pp. 817–826, 1977.; G. Pfurtscheller and A. Aranibar, “Evaluation of event-related desynchronization (erd) preceding and following voluntary self-paced movement,” Electroencephalogra phy and clinical neurophysiology, vol. 46, no. 2, pp. 138–146, 1979.; C. Neuper and G. Pfurtscheller, “Event-related dynamics of cortical rhythms: Frequency specific features and functional correlates,” International journal of psychophysiol ogy, vol. 43, no. 1, pp. 41–58, 2001.; D. Cheyne, W. Gaetz, L. Garnero, et al., “Neuromagnetic imaging of cortical oscil lations accompanying tactile stimulation,” Cognitive brain research, vol. 17, no. 3, pp. 599–611, 2003.; C. Neuper, M. W¨ortz, and G. Pfurtscheller, “Erd/ers patterns reflecting sensorimotor activation and deactivation,” Progress in brain research, vol. 159, pp. 211–222, 2006.; R. Ackerley, E. Eriksson, and J. Wessberg, “Ultra-late eeg potential evoked by prefer ential activation of unmyelinated tactile afferents in human hairy skin,” Neuroscience letters, vol. 535, pp. 62–66, 2013; S.-B. Lee, H.-J. Kim, H. Kim, J.-H. Jeong, S.-W. Lee, and D.-J. Kim, “Comparative analysis of features extracted from eeg spatial, spectral and temporal domains for binary and multiclass motor imagery classification,” Information Sciences, vol. 502, pp. 190–200, 2019; B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, “Visualization of significant erd/ers patterns in multichannel eeg and ecog data,” Clinical neurophys iology, vol. 113, no. 1, pp. 43–47, 2002.; G. R. M¨uller-Putz, D. Zimmermann, B. Graimann, K. Nestinger, G. Korisek, and G. Pfurtscheller, “Event-related beta eeg-changes during passive and attempted foot movements in paraplegic patients,” Brain research, vol. 1137, pp. 84–91, 2007.; M. Hardmeier, F. Hatz, H. Bousleiman, C. Schindler, C. J. Stam, and P. Fuhr, “Reproducibility of functional connectivity and graph measures based on the phase lag index (pli) and weighted phase lag index (wpli) derived from high resolution eeg,” PloS one, vol. 9, no. 10, e108648, 2014.; S. Aviyente, A. Tootell, and E. M. Bernat, “Time-frequency phase-synchrony ap proaches with erps,” International Journal of Psychophysiology, vol. 111, pp. 88–97, 2017.; S. Dai and Q. Wei, “Electrode channel selection based on backtracking search opti mization in motor imagery brain–computer interfaces,” Journal of integrative neu roscience, vol. 16, no. 3, pp. 241–254, 2017; R. Mahamune and S. H. Laskar, “An automatic channel selection method based on the standard deviation of wavelet coefficients for motor imagery based brain– computer interfacing,” International Journal of Imaging Systems and Technology, vol. 33, no. 2, pp. 714–728, 2023.; M. H. Alomari, E. A. Awada, A. Samaha, and K. Alkamha, “Wavelet-based feature extraction for the analysis of eeg signals associated with imagined fists and feet movements,” Computer and Information Science, vol. 7, no. 2, p. 17, 2014; R. V. Chacko, B. Kim, S. W. Jung, et al., “Distinct phase-amplitude couplings distinguish cognitive processes in human attention,” NeuroImage, vol. 175, pp. 111– 121, 2018, issn: 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2018Test. 03.003.; A. M. Alvarez-Meza, L. F. Vel´asquez-Mart´ınez, and G. Castellanos-Dominguez, ´ “Time-series discrimination using feature relevance analysis in motor imagery clas sification,” Neurocomputing, vol. 151, pp. 122–129, 2015.; M. Ahn, H. Cho, S. Ahn, and S. C. Jun, “High theta and low alpha powers may be indicative of bci-illiteracy in motor imagery,” PloS one, vol. 8, no. 11, e80886, 2013.; C. Saiote, A. Tacchino, G. Brichetto, et al., “Resting-state functional connectiv ity and motor imagery brain activation,” Human brain mapping, vol. 37, no. 11, pp. 3847–3857, 2016.; N. Yeung, R. Bogacz, C. B. Holroyd, S. Nieuwenhuis, and J. D. Cohen, “Theta phase resetting and the error-related negativity,” Psychophysiology, vol. 44, no. 1, pp. 39–49, 2007; W. Jian, M. Chen, and D. J. McFarland, “Eeg based zero-phase phase-locking value (plv) and effects of spatial filtering during actual movement,” Brain research bulletin, vol. 130, pp. 156–164, 2017; D. Wang, D. Miao, and G. Blohm, “Multi-class motor imagery eeg decoding for brain-computer interfaces,” Frontiers in neuroscience, vol. 6, p. 151, 2012; K. A. Garrison, D. Scheinost, E. S. Finn, X. Shen, and R. T. Constable, “The (in) stability of functional brain network measures across thresholds,” Neuroimage, vol. 118, pp. 651–661, 2015.; D. L. Harrington, M. Rubinov, S. Durgerian, et al., “Network topology and func tional connectivity disturbances precede the onset of huntington´s disease,” Brain, vol. 138, no. 8, pp. 2332–2346, 2015; R. Scherer and C. Vidaurre, “Motor imagery based brain–computer interfaces,” in Smart Wheelchairs and Brain-Computer Interfaces, Elsevier, 2018, pp. 171–195; K. Kasahara, C. S. DaSalla, M. Honda, and T. Hanakawa, “Neuroanatomical corre lates of brain–computer interface performance,” Neuroimage, vol. 110, pp. 95–100, 2015.; S.-H. Park and S.-G. Lee, “Small sample setting and frequency band selection prob lem solving using subband regularized common spatial pattern,” IEEE Sensors Jour nal, vol. 17, no. 10, pp. 2977–2983, 2017.; G. Pfurtscheller, C. Neuper, K. Pichler-Zalaudek, G. Edlinger, and F. H. L. da Silva, “Do brain oscillations of different frequencies indicate interaction between cortical areas in humans?” Neuroscience letters, vol. 286, no. 1, pp. 66–68, 2000.; Z.-c. Tang, C. Li, J.-f. Wu, P.-c. Liu, and S.-w. Cheng, “Classification of eeg-based single-trial motor imagery tasks using a b-csp method for bci,” Frontiers of Infor mation Technology & Electronic Engineering, vol. 20, no. 8, pp. 1087–1098, 2019.; S. Kumar, K. Mamun, and A. Sharma, “Csp-tsm: Optimizing the performance of riemannian tangent space mapping using common spatial pattern for mi-bci,” Com puters in biology and medicine, vol. 91, pp. 231–242, 2017; G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and K.-R. Muller, “Combined optimization of spatial and temporal filters for improving brain-computer interfacing,” IEEE transactions on biomedical engineering, vol. 53, no. 11, pp. 2274– 2281, 2006.; W. He, P. Wei, L. Wang, and Y. Zou, “A novel EMD-based common spatial pattern for motor imagery brain-computer interface,” in Biomedical and Health Informatics (BHI), IEEE, 2012, pp. 216–219.; M. Tariq, P. M. Trivailo, and M. Simic, “Mu-beta event-related (de) synchronization and eeg classification of left-right foot dorsiflexion kinaesthetic motor imagery for bci,” Plos one, vol. 15, no. 3, e0230184, 2020.; L. Velasquez-Martinez, J. Caicedo-Acosta, and G. Castellanos-Dominguez, “Entropy based estimation of event-related de/synchronization in motor imagery using vector quantized patterns,” Entropy, vol. 22, no. 6, p. 703, 2020; G. Liu and J. Wang, “Eeg: An analytic brain-computer interface algorithm,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 643– 655, 2022.; V. Carmen, S. T. H, and S. Alois, “BioSig: The free and open source software library for biomedical signal processing,” Computational intelligence and neuro science, vol. 2011, 2011.; D. Vidaurre, R. Abeysuriya, R. Becker, et al., “Discovering dynamic brain networks from big data in rest and task,” Neuroimage, vol. 180, pp. 646–656, 2018; M. Miao, A. Wang, and F. Liu, “A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery eeg pattern recognition,” Medical & biological engineering & computing, vol. 55, no. 9, pp. 1589– 1603, 2017.; M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: Uses and interpretations,” Neuroimage, vol. 52, no. 3, pp. 1059–1069, 2010.; J. Gonzalez-Astudillo, T. Cattai, G. Bassignana, M.-C. Corsi, and F. D. V. Fallani, “Network-based brain–computer interfaces: Principles and applications,” Journal of Neural Engineering, vol. 18, no. 1, p. 011 001, 2021.; Z. Feng, L. Qian, H. Hu, and Y. Sun, “Functional connectivity for motor imaginary recognition in brain-computer interface,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2020, pp. 3678–3682; P. Babaeeghazvini, L. M. Rueda-Delgado, H. Zivari Adab, J. Gooijers, S. Swinnen, and A. Daffertshofer, “A combined diffusion-weighted and electroencephalography study on age-related differences in connectivity in the motor network during biman ual performance,” Human Brain Mapping, vol. 40, no. 6, pp. 1799–1813, 2019.; M. Lee, Y.-H. Kim, and S.-W. Lee, “Motor impairment in stroke patients is associ ated with network properties during consecutive motor imagery,” IEEE Transactions on Biomedical Engineering, 2022.; X. Xiong, Z. Yu, T. Ma, et al., “Weighted brain network metrics for decoding action intention understanding based on eeg,” Frontiers in Human Neuroscience, vol. 14, p. 232, 2020.; J. Liu, Y. Zhu, H. Sun, T. Ristaniemi, and F. Cong, “Sustaining attention for a prolonged duration affects dynamic organizations of frequency-specific functional connectivity,” Brain topography, vol. 33, no. 6, pp. 677–692, 2020.; M. Yu, “Benchmarking metrics for inferring functional connectivity from multi channel eeg and meg: A simulation study,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, no. 12, p. 123 124, 2020.; M. Hamedi, S.-H. Salleh, and A. M. Noor, “Electroencephalographic motor imagery brain connectivity analysis for bci: A review,” Neural computation, vol. 28, no. 6, pp. 999–1041, 2016.; L. F. Velasquez-Martinez, F. Zapata-Castano, and G. Castellanos-Dominguez, “Dy namic modeling of common brain neural activity in motor imagery tasks,” Frontiers in Neuroscience, vol. 14, p. 714, 2020.; K. Styszko, L. Samek, K. Szramowiat, et al., “Oxidative potential of pm10 and pm2. 5 collected at high air pollution site related to chemical composition: Krakow case study,” Air Quality, Atmosphere & Health, vol. 10, no. 9, pp. 1123–1137, 2017.; J. S. Aznar, C. Aguilar-Paredes, L. S´anchez-G´omez, L. E. Bruni, and A. Wulff Abramsson, “Methodology for detection of erd/ers eeg patterns produced by cut events in film fragments,” in International Conference on Human-Computer Inter action, Springer, 2020, pp. 157–17; I. Gutberlet and M. De Vos, “1q1 real-time eeg feedback during simultaneous eeg– fmri identifies the 2 cortical signature of motor imagery,”; B. Z. Allison, E. W. Wolpaw, and J. R. Wolpaw, “Brain–computer interface systems: Progress and prospects,” Expert review of medical devices, vol. 4, no. 4, pp. 463–474, 2007.; R. J. Huster and L. Raud, “A tutorial review on multi-subject decomposition of eeg,” Brain topography, vol. 31, no. 1, pp. 3–16, 2018; J. Terrien, G. Germain, C. Marque, and B. Karlsson, “Bivariate piecewise stationary segmentation; improved pre-treatment for synchronization measures used on non stationary biological signals,” Medical engineering & physics, vol. 35, no. 8, pp. 1188– 1196, 2013.; C. V. Reinhold Scherer, “Chapter 8 - motor imagery based brainˆa¿“computer in terfaces,” P. Diez, Ed., pp. 171–195, 2018.; J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain–computer interfaces for communication and control,” Clinical neurophysiol ogy, vol. 113, no. 6, pp. 767–791, 2002.; M. Ahn, S. Ahn, J. H. Hong, et al., “Gamma band activity associated with bci performance: Simultaneous meg/eeg study,” Frontiers in human neuroscience, vol. 7, p. 848, 2013.; C. Zich, S. Debener, C. Kranczioch, M. G. Bleichner, I. Gutberlet, and M. De Vos, “Real-time eeg feedback during simultaneous eeg–fmri identifies the cortical signa ture of motor imagery,” Neuroimage, vol. 114, pp. 438–447, 2015; F Y Zapata, O W Gomez et al. ”Graph Strength for Identification of Pre-training Desynchronization”. In: Springer (2023), pp. 36-44; F Y Zapata et al. ”wPLI for Pre-Training Desynchronization Identification”. In: CITIS (2022), 7751.; L F Velasquez, F Y Zapata et al. ”Dynamic Modeling of Common Brain Neural Activity in Motor Imagery Tasks”. In: Frontiers in Neuroscience (2020), 14, 714.; L F Velasquez, F Y Zapata et al. ”Group differences in time-frequency relevant patterns for user-independent BCI applications”. In: Springer Cham (2019), 138- 145.; L F Velasquez, F Y Zapata et al. ”Detecting EEG dynamic changes using supervised temporal patterns”. In: Springer Cham (2018), 351-358; https://repositorio.unal.edu.co/handle/unal/84097Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  3. 3
    رسالة جامعية

    المؤلفون: Collazos Huertas, Diego Fabian

    المساهمون: Castellanos-Dominguez, German, Grupo de Control y Procesamiento Digital de Señales, Collazos Huertas, Diego Fabian 0002-0434-3444, Collazos Huertas, Diego Fabian https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000017335Test, Collazos Huertas, Diego Fabian https://www.researchgate.net/profile/Diego-CollazosTest, Collazos Huertas, Diego Fabian D.F Collazos-Huertas

    وصف الملف: xxii, 127 páginas; application/pdf

    العلاقة: [Aellen et al., 2021] Aellen, F., G¨oktepe-Kavis, P., Apostolopoulos, S., and Tzovara, A. (2021). Convolutional neural networks for decoding electroencephalography responses and visualizing trial by trial changes in discriminant features. Journal of Neuroscience Methods, 364:109367.; [Aggarwal and Chugh, 2019] Aggarwal, S. and Chugh, N. (2019). Signal processing techniques for motor imagery brain computer interface: A review. Array, 1:100003.; [Al-Saegh et al., 2021] Al-Saegh, A., Dawwd, S., and Abdul-Jabbar, J. (2021). Deep learning for motor imagery eeg-based classification: A review. Biomedical Signal Processing and Control, 63:102172.; [Alonso-Valerdi, 2016] Alonso-Valerdi, L. (2016). Python executable script for estimating two effective parameters to individualize brain-computer interfaces: Individual alpha frequency and neurophysiological predictor. Frontiers in neuroinformatics, 10:22.; Altaheri et al., 2021] Altaheri, H., Muhammad, G., Alsulaiman, M., Amin, S., Altuwaijri, G., Abdul, W., Bencherif, M., and Faisal, M. (2021). Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: a review. Neural Computing and Applications, pages 1–42.; [Alvarez-Meza et al., 2017] Alvarez-Meza, A., Orozco-Gutierrez, A., and CastellanosDominguez, G. (2017). Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns. Frontiers in neuroscience, 11:550.; [Alvarez-Meza et al., 2014] ´ Alvarez-Meza, A. M., C´ardenas-Pe˜na, D., and Castellanos- ´ Dominguez, G. (2014). Unsupervised kernel function building using maximization of information potential variability. In Bayro-Corrochano, E. and Hancock, E., editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pages 335–342, Cham. Springer International Publishing.; [Amin et al., 2020] Amin, S., Alsulaiman, M., Muhammad, G., Hossain, M., and Guizani, M. (2020). Deep learning for eeg motor imagery-based cognitive healthcare. In Connected Health in Smart Cities, pages 233–254. Springer.; [Amin et al., 2019] Amin, S., Alsulaiman, M., Muhammad, G., Mekhtiche, M., and Shamim, H. (2019). Deep learning for eeg motor imagery classification based on multi-layer cnns feature fusion. Future Generation Computer Systems, 101:542–554.; [Amin et al., 2021] Amin, S., Altaheri, H., Muhammad, G., Alsulaiman, M., and Abdul, W. (2021). Attention based inception model for robust eeg motor imagery classification. In 2021 IEEE international instrumentation and measurement technology conference (I2MTC), pages 1–6. IEEE.; [Anowar et al., 2021] Anowar, F., Sadaoui, S., and Selim, B. (2021). Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne). Computer Science Review, 40:100378.; Aral and Peker, 2020] Aral, L. and Peker, G. (2020). A novel hybrid: Neuro-immunoengineering. Natural and Applied Sciences Journal, 3:1 – 12; [Bai et al., 2021] Bai, X., Wang, X., Liu, X., Liu, Q., Song, J., Sebe, N., and Kim, B. (2021). Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments. Pattern Recognition, 120:108102; Bang et al., 2021] Bang, J., Lee, M., Fazli, S., Guan, C., and Lee, S. (2021). Spatio-spectral feature representation for motor imagery classification using convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems, pages 1–12; [Belaout et al., 2018] Belaout, A., Krim, F., Mellit, A., Talbi, B., and Arabi, A. (2018). Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification. Renewable Energy, 127:548–558.; [Bengio, 2012] Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In Neural networks: Tricks of the trade, pages 437–478. Springer.; [Bengio et al., 2013] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828.; [Bengio et al., 2017] Bengio, Y., Goodfellow, I., and Courville, A. (2017). Deep learning, volume 1. MIT press Massachusetts, USA:.; [Bin et al., 2020] Bin, H., Lei, D., and Abbas, S. (2020). Electrophysiological Mapping and Source Imaging, pages 379–413. Springer International Publishing, Cham.; [Borra et al., 2020] Borra, D., Fantozzi, S., and Magosso, E. (2020). Interpretable and lightweight convolutional neural network for eeg decoding: Application to movement execution and imagination. Neural Networks, 129:55–74.; [Brunner et al., 2008] Brunner, C., Leeb, R., M¨uller-Putz, G., Schl¨ogl, A., and Pfurtscheller, G. (2008). Bci competition 2008–graz data set a. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, 16:1–6.; [Cardona et al., 2020] Cardona, L., Vargas-Cardona, H., Navarro Gonz´alez, P., Cardenas Pe˜na, D., and Orozco Guti´errez, A. (2020). Classification of categorical data based on the chi-square dissimilarity and t-sne. Computation, 8(4):104; [Chakraborty et al., 2017] Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne, D., Alzantot, M., Cerutti, F., Srivastava, M., Preece, A., Julier, S., Rao, R., Kelley, T., Braines, D., Sensoy, M., Willis, C., and Gurram, P. (2017). Interpretability of deep learning models: A survey of results. In 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–6.; [Chattopadhay et al., 2018] Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubramanian, V. (2018). Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 839–847.; [Chaudhary et al., 2019] Chaudhary, S., Taran, S., Bajaj, V., and Sengur, A. (2019). Convolutional neural network based approach towards motor imagery tasks eeg signals classification. IEEE Sensors Journal, 19(12):4494–4500.; [Chavarriaga et al., 2017] Chavarriaga, R., Fried-Oken, M., Kleih, S., Lotte, F., and Scherer, R. (2017). Heading for new shores! overcoming pitfalls in bci design. Brain-Computer Interfaces, 4(1-2):60–73.; [Cheng et al., 2020] Cheng, G., Ehrlich, S., Lebedev, M., and Nicolelis, M. (2020). Neuroengineering challenges of fusing robotics and neuroscience. Science Robotics, 5(49):7–10.; [Cheng et al., 2016] Cheng, H., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al. (2016). Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for recommender systems, pages 7–10.; [Chhabra et al., 2020] Chhabra, H., Shajil, N., Venkatasubramanian, G., et al. (2020). Investigation of deep convolutional neural network for classification of motor imagery fnirs signals for bci applications. Biomedical Signal Processing and Control, 62:102133.; [Cho et al., 2017] Cho, H., Ahn, M., Ahn, S., Kwon, M., and Jun, S. (2017). Eeg datasets for motor imagery brain–computer interface. GigaScience, 6(7):gix034.; Collazos-Huertas et al., 2021] Collazos-Huertas, D., Alvarez-Meza, A., and Castellanos- Dominguez, G. (2021). Spatial interpretability of time-frequency relevance optimized in motor imagery discrimination using deep&wide networks. Biomedical Signal Processing and Control, 68:102626.; [Cortes et al., 2012] Cortes, C., Mohri, M., and Rostamizadeh, A. (2012). Algorithms for learning kernels based on centered alignment. The Journal of Machine Learning Research, 13(1):795–828.; [Craik et al., 2019a] Craik, A., He, Y., and Contreras-Vidal, J. (2019a). Deep learning for electroencephalogram (eeg) classification tasks: a review. Journal of neural engineering, 16(3):031001.; [Craik et al., 2019b] Craik, A., Kilicarslan, A., and Contreras-Vidal, J. (2019b). Classification and transfer learning of eeg during a kinesthetic motor imagery task using deep convolutional neural networks. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3046–3049. IEEE.; [Dabosmita et al., 2021] Dabosmita, P., Moumita, M., and Ashish, B. (2021). A review of brain-computer interface. In Mukherjee, M., Mandal, J., Bhattacharyya, S., Huck, C., and Biswas, S., editors, Advances in Medical Physics and Healthcare Engineering, pages 507–531, Singapore. Springer Singapore.; [Dai et al., 2018] Dai, C., Wang, Z., Wei, L., Chen, G., Chen, B., Zuo, F., and Li, Y. (2018). Combining early post-resuscitation eeg and hrv features improves the prognostic performance in cardiac arrest model of rats. The American journal of emergency medicine, 36(12):2242–2248.; [Dai et al., 2019] Dai, M., Zheng, D., Na, R., Wang, S., and Zhang, S. (2019). Eeg classification of motor imagery using a novel deep learning framework. Sensors, 19(3).; [D¨ahne et al., 2015] D¨ahne, S., Bießmann, F., Samek, W., Haufe, S., Goltz, D., Gundlach, C., Villringer, A., Fazli, S., and M¨uller, K. (2015). Multivariate machine learning methods for fusing multimodal functional neuroimaging data. Proceedings of the IEEE,103(9):1507–1530.; [Doborjeh et al., 2018] Doborjeh, M., Kasabov, N., and Doborjeh, Z. (2018). Evolving, dynamic clustering of spatio/spectro-temporal data in 3d spiking neural network models and a case study on eeg data. Evolving systems, 9(3):195–211.; [D’souza et al., 2020] D’souza, R., Huang, P., and Yeh, F. (2020). Structural analysis and optimization of convolutional neural networks with a small sample size. Scientific reports, 10(1):1–13.; [Edelman et al., 2015] Edelman, B., Johnson, N., Sohrabpour, A., Tong, S., Thakor, N., and He, B. (2015). Systems neuroengineering: Understanding and interacting with the brain. Engineering, 1(3):292–308.; [Ehrsson et al., 2000] Ehrsson, H., Naito, E., Geyer, S., Amunts, K., Zilles, K., Forssberg, H., and Roland, P. (2000). Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a pet study. European Journal of Neuroscience, 12(9):3385–3398.; [Fan et al., 2021] Fan, F., Xiong, J., Li, M., and Wang, G. (2021). On interpretability of artificial neural networks: A survey. IEEE Transactions on Radiation and Plasma Medical Sciences, 5(6):741–760.; [Farahat et al., 2019] Farahat, A., Reichert, C., Sweeney-Reed, C., and Hinrichs, H. (2019). Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization. Journal of Neural Engineering, 16(6):066010.; [Farmer and Rix, 2022] Farmer, W. and Rix, A. (2022). Evaluating power system network inertia using spectral clustering to define local area stability. International Journal of Electrical Power & Energy Systems, 134:107404.; [Fatourechi et al., 2007] Fatourechi, M., Bashashati, A., Ward, R., and Birch, G. (2007). Emg and eog artifacts in brain computer interface systems: A survey. Clinical neurophysiology, 118(3):480–494.; [Feng et al., 2018] Feng, J., Yin, E., Jin, J., Saab, R., Daly, I., Wang, X., Hu, D., and Cichocki, A. (2018). Towards correlation-based time window selection method for motor imagery bcis. Neural Networks, 102:87–95.; [Fernandez-Fraga et al., 2019] Fernandez-Fraga, S., Aceves-Fernandez, M., and J, P.-O. (2019). Eeg data collection using visual evoked, steady state visual evoked and motor image task, designed to brain computer interfaces (bci) development. Data in Brief, 25:103871.; [Ferrero et al., 2021] Ferrero, L., Ortiz, M., Quiles, V., I´a˜nez, E., Flores, J., and Azor´ın, J. (2021). Brain symmetry analysis during the use of a bci based on motor imagery for the control of a lower-limb exoskeleton. Symmetry, 13(9):1746.; [Frank et al., 2019] Frank, J., Antonini, M., and Anikeeva, P. (2019). Next-generation interfaces for studying neural function. Nature biotechnology, 37(9):1013–1023.; [Freer and Yang, 2020] Freer, D. and Yang, G. (2020). Data augmentation for self-paced motor imagery classification with c-lstm. Journal of neural engineering, 17(1):016041.; [Gannouni et al., 2020] Gannouni, S., Belwafi, K., Aboalsamh, H., AlSamhan, Z., Alebdi, B., Almassad, Y., and Alobaedallah, H. (2020). Eeg-based bci system to detect fingers movements. Brain Sciences, 10(12).; [Gao et al., 2020] Gao, Z., Dang, W., Wang, X., Hong, X., Hou, L., Ma, K., and Perc, M. (2020). Complex networks and deep learning for eeg signal analysis. Cognitive Neurodynamics, pages 1–20.; [Garc´ıa-Murillo et al., 2021] Garc´ıa-Murillo, D. G., Alvarez-Meza, A., and CastellanosDominguez, G. (2021). Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks. Sensors, 21(8):2750.; [George et al., 2021] George, O., Smith, R., Madiraju, P., Yahyasoltani, N., and Ahamed, S. (2021). Motor imagery: A review of existing techniques, challenges and potentials. In 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), pages 1893–1899. IEEE.; [G´eron, 2022] G´eron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. . O’Reilly Media, Inc.”.; [Ghorbani et al., 2019] Ghorbani, A., Abid, A., and Zou, J. (2019). Interpretation of neural networks is fragile. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):3681–3688.; [Ghumman et al., 2021] Ghumman, M., Singh, S., Singh, N., and Jindal, B. (2021). Optimization of parameters for improving the performance of eeg-based bci system. Journal of Reliable Intelligent Environments, 7(2):145–156.; [Gilbert et al., 2020] Gilbert, N., Mewis, R., and Sutcliffe, O. (2020). Classification of fentanyl analogues through principal component analysis (pca) and hierarchical clustering of gc–ms data. Forensic Chemistry, 21:100287.; [Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.; [Grigorev et al., 2021] Grigorev, N., Savosenkov, A., Lukoyanov, M., Udoratina, A., Shusharina, N., Kaplan, A., Hramov, A., Kazantsev, V., and Gordleeva, S. (2021). A bci-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29:1583–1592.; [Gubert et al., 2020] Gubert, P., Costa, M., Silva, C., and Trofino-Neto, A. (2020). The performance impact of data augmentation in csp-based motor-imagery systems for bci applications. Biomedical Signal Processing and Control, 62:102152.; [Guidotti et al., 2018] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Comput. Surv., 51(5).; [Guillot and Debarnot, 2019] Guillot, A. and Debarnot, U. (2019). Benefits of motor imagery for human space flight: A brief review of current knowledge and future applications. Frontiers in Physiology, 10:396.; [Hassanpour et al., 2019] Hassanpour, A., Moradikia, M., Adeli, H., Khayami, S., and Shamsinejadbabaki, P. (2019). A novel end-to-end deep learning scheme for classifying multiclass motor imagery electroencephalography signals. Expert Systems, 36(6):e12494.; [Ho and Hung, 2020] Ho, R. and Hung, K. (2020). A comparative investigation of mode mixing in eeg decomposition using emd, eemd and m-emd. In 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE), pages 203–210. IEEE.; [Ibrahim and Shafiq, 2022] Ibrahim, R. and Shafiq, M. (2022). Augmented score-cam: High resolution visual interpretations for deep neural networks. Knowledge-Based Systems, 252:109287.; [Ide and Kurita, 2017] Ide, H. and Kurita, T. (2017). Improvement of learning for cnn with relu activation by sparse regularization. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 2684–2691. IEEE.; [Ieracitano et al., 2021] Ieracitano, C., Mammone, N., Hussain, A., and Morabito, F. (2021). A novel explainable machine learning approach for eeg-based brain-computer interface systems. Neural Computing and Applications, pages 1–14.; [Jackson et al., 2001] Jackson, P., Lafleur, M., Malouin, F., Richards, C., and Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of physical medicine and rehabilitation, 82(8):1133–1141.; [Jeannerod, 2001] Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage, 14(1):S103–S109.; [Jeon et al., 2021] Jeon, E., Ko, W., Yoon, J., and Suk, H. (2021). Mutual informationdriven subject-invariant and class-relevant deep representation learning in bci. IEEE Transactions on Neural Networks and Learning Systems.; [Jiang et al., 2020] Jiang, X., Chang, L., and Zhang, Y. (2020). Classification of alzheimer’s disease via eight-layer convolutional neural network with batch normalization and dropout techniques. Journal of Medical Imaging and Health Informatics, 10(5):1040–1048.; [Jin et al., 2020a] Jin, J., Liu, C., Daly, I., Miao, Y., Li, S., Wang, X., and Cichocki, A. (2020a). Bispectrum-based channel selection for motor imagery based brain-computer interfacing. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(10):2153–2163.; [Jin et al., 2020b] Jin, J., Xiao, R., Daly, I., Miao, Y., Wang, X., and Cichocki, A. (2020b). Internal feature selection method of csp based on l1-norm and dempster–shafer theory. IEEE transactions on neural networks and learning systems, 32(11):4814–4825.; [Kant et al., 2020] Kant, P., Laskar, S., Hazarika, J., and Mahamune, R. (2020). Cwt based transfer learning for motor imagery classification for brain computer interfaces. Journal of Neuroscience Methods, 345:108886.; [Kappes and Morewedge, 2016] Kappes, H. and Morewedge, C. (2016). Mental simulation as substitute for experience. Social and Personality Psychology Compass, 10(7):405–420.; [Keelawat et al., 2021] Keelawat, P., Thammasan, N., Numao, M., and Kijsirikul, B. (2021). A comparative study of window size and channel arrangement on eeg-emotion recognition using deep cnn. Sensors, 21(5):1678.; [Khan et al., 2020] Khan, M., Das, R., Iversen, H., and Puthusserypady, S. (2020). Review on motor imagery based bci systems for upper limb post-stroke neurorehabilitation: From designing to application. Computers in Biology and Medicine, 123:103843.; [Ko et al., 2021a] Ko, W., Jeon, E., Jeong, S., Phyo, J., and Suk, H. (2021a). A survey on deep learning-based short/zero-calibration approaches for eeg-based brain–computer interfaces. Frontiers in Human Neuroscience, 15.; [Ko et al., 2021b] Ko, W., Jeon, E., Jeong, S., and Suk, H. (2021b). Multi-scale neural network for eeg representation learning in bci. IEEE Computational Intelligence Magazine, 16(2):31–45.; [Kumar et al., 2019] Kumar, S., Sharma, A., and Tsunoda, T. (2019). Brain wave classification using long short-term memory network based optical predictor. Scientific reports, 9(1):1–13.; [Labach et al., 2019] Labach, A., Salehinejad, H., and Valaee, S. (2019). Survey of dropout methods for deep neural networks. arXiv preprint arXiv:1904.13310.; [Lacey and Lawson, 2013] Lacey, S. and Lawson, R. (2013). Multisensory imagery. Springer Science & Business Media.; [Ladda et al., 2021] Ladda, A., Lebon, F., and Lotze, M. (2021). Using motor imagery practice for improving motor performance – a review. Brain and Cognition, 150:105705.; [Lawhern et al., 2018] Lawhern, V., Solon, A., Waytowich, N., Gordon, S., Hung, C., and Lance, B. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of Neural Engineering, 15(5):056013.; [LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–444.; [Lee and Choi, 2018] Lee, H. and Choi, Y. (2018). A convolution neural networks scheme for classification of motor imagery eeg based on wavelet time-frequecy image. In 2018 International Conference on Information Networking (ICOIN), pages 906–909.; [Lee et al., 2019a] Lee, M., Kwon, O., Kim, Y., Kim, H., Lee, Y., Williamson, J., Fazli, S., and Lee, S. (2019a). Eeg dataset and open bmi toolbox for three bci paradigms: an investigation into bci illiteracy. GigaScience, 8(5):giz002.; [Lee et al., 2020] Lee, M., Yoon, J., and Lee, S. (2020). Predicting motor imagery performance from resting-state eeg using dynamic causal modeling. Frontiers in human neuroscience, 14:321.; [Lee et al., 2019b] Lee, M.-H., Kwon, O.-Y., Kim, Y.-J., Kim, H.-K., Lee, Y.-E., Williamson, J., Fazli, S., and Lee, S.-W. (2019b). EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. GigaScience, 8(5). giz002.; [Li et al., 2020a] Li, A., Alimanov, K., Fazli, S., and Lee, M. (2020a). Towards paradigmindependent brain computer interfaces. In 2020 8th International Winter Conference on Brain-Computer Interface (BCI), pages 1–6.; [Li et al., 2019] Li, B., Yang, B., Guan, C., and Hu, C. (2019). Three-class motor imagery classification based on fbcsp combined with voting mechanism. In 2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pages 1–4. IEEE.; [Li et al., 2020b] Li, D., Xu, J., Wang, J., Fang, X., and Ji, Y. (2020b). A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of eeg signals decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(12):2615–2626.; [Li et al., 2021a] Li, R., Zhang, Y., Zhu, S., and Liu, S. (2021a). Person search via class activation map transferring. Multimedia Tools and Applications, pages 1–16.; [Li et al., 2021b] Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., Bian, J., and Dou, D. (2021b). Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond.; [Li et al., 2020c] Li, Y., Yang, H., Li, J., Chen, D., and Du, M. (2020c). Eeg-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by grad-cam. Neurocomputing, 415:225–233.; [Liang et al., 2016] Liang, S., Choi, K., Qin, J., Pang, W., Wang, Q., and Heng, P. (2016). Improving the discrimination of hand motor imagery via virtual reality based visual guidance. Computer Methods and Programs in Biomedicine, 132:63–74.; [Liao et al., 2020] Liao, J., Luo, J., Yang, T., So, R., and Chua, M. (2020). Effects of local and global spatial patterns in eeg motor-imagery classification using convolutional neural network. Brain-Computer Interfaces, 7(3-4):47–56.; [Lim et al., 2010] Lim, C., Lee, T., Guan, C., Fung, D., Cheung, Y., Teng, S., Zhang, H., and Krishnan, K. (2010). Effectiveness of a brain-computer interface based programme for the treatment of adhd: a pilot study. Psychopharmacol Bull, 43(1):73–82.; [Liu et al., 2021] Liu, X., Lv, L., Shen, Y., Xiong, P., Yang, J., and Liu, J. (2021). Multiscale space-time-frequency feature-guided multitask learning cnn for motor imagery eeg classification. Journal of Neural Engineering, 18(2):026003.; [Liu et al., 2020] Liu, X., Makeyev, O., and Besio, W. (2020). Improved spatial resolution of electroencephalogram using tripolar concentric ring electrode sensors. Journal of Sensors, 2020.; [Lotte and Guan, 2011] Lotte, F. and Guan, C. (2011). Regularizing common spatial patterns to improve bci designs: Unified theory and new algorithms. IEEE Transactions on Biomedical Engineering, 58(2):355–362.; [Lotze et al., 2003] Lotze, M., Scheler, G., Tan, H., Braun, C., and Birbaumer, N. (2003). The musician’s brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage, 20(3):1817–1829.; [Luo et al., 2020] Luo, W., Zhang, J., Feng, P., Yu, D., and Wu, Z. (2020). A concise peephole model based transfer learning method for small sample temporal feature-based data-driven quality analysis. Knowledge-Based Systems, 195:105665.; [Ma et al., 2021] Ma, W., Gong, Y., Zhou, G., Liu, Y., Zhang, L., and He, B. (2021). A channel-mixing convolutional neural network for motor imagery eeg decoding and feature visualization. Biomedical Signal Processing and Control, 70:103021.; [Mahamune and Laskar, 2021] Mahamune, R. and Laskar, S. (2021). Classification of the four-class motor imagery signals using continuous wavelet transform filter bank-based two-dimensional images. International Journal of Imaging Systems and Technology.; [Marchesotti et al., 2016] Marchesotti, S., Bassolino, M., Serino, A., Bleuler, H., and Blanke, O. (2016). Quantifying the role of motor imagery in brain-machine interfaces. Scientific reports, 6(1):1–12.; [McFarland et al., 2000] McFarland, D., Miner, L., Vaughan, T., and Wolpaw, J. (2000). Mu and beta rhythm topographies during motor imagery and actual movements. Brain topography, 12(3):177–186.; [Meng and He, 2019] Meng, J. and He, B. (2019). Exploring training effect in 42 human subjects using a non-invasive sensorimotor rhythm based online bci. Frontiers in human neuroscience, 13:128.; [Miotto et al., 2018] Miotto, R., Wang, F., Wang, S., Jiang, X., and Dudley, J. (2018). Deep learning for healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6):1236–1246.; [Mirzaei and Ghasemi, 2021] Mirzaei, S. and Ghasemi, P. (2021). Eeg motor imagery classification using dynamic connectivity patterns and convolutional autoencoder. Biomedical Signal Processing and Control, 68:102584.; [Mohdiwale et al., 2021] Mohdiwale, S., Sahu, M., Sinha, G., and Nisar, H. (2021). Investigating feature ranking methods for sub-band and relative power features in motor imagery task classification. Journal of healthcare engineering, 2021.; [Monga et al., 2021] Monga, V., Li, Y., and Eldar, Y. (2021). Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44.; [Morewedge et al., 2010] Morewedge, C., Huh, Y., and Vosgerau, J. (2010). Thought for food: Imagined consumption reduces actual consumption. Science, 330(6010):1530–1533.; [Munzert and Lorey, 2013] Munzert, J. and Lorey, B. (2013). Motor and visual imagery in sports. In Multisensory imagery, pages 319–341. Springer; [Naidu et al., 2020] Naidu, R., Ghosh, A., Maurya, Y., Kundu, S., et al. (2020). Is-cam: Integrated score-cam for axiomatic-based explanations. arXiv preprint arXiv:2010.03023.; [Neuper et al., 2005] Neuper, C., Scherer, R., Reiner, M., and Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial eeg. Cognitive brain research, 25(3):668–677.; [Olivas-Padilla et al., 2019] Olivas-Padilla, B. et al. (2019). Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Applied Soft Computing, 75:461–472; [Ortiz-Echeverri et al., 2019] Ortiz-Echeverri, C., Salazar-Colores, S., Rodr´ıguez-Res´endiz, J., and G´omez-Loenzo, R. (2019). A new approach for motor imagery classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network. Sensors, 19(20).; [Ostarek et al., 2019] Ostarek, M., Joosen, D., Ishag, A., De Nijs, M., and Huettig, F. (2019). Are visual processes causally involved in “perceptual simulation” effects in the sentencepicture verification task? Cognition, 182:84–94.; [Padfield et al., 2019] Padfield, N., Zabalza, J., Zhao, H., Masero, V., and Ren, J. (2019). Eeg-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors, 19(6):1423.; [Page, 2000] Page, S. (2000). Imagery improves upper extremity motor function in chronic stroke patients: a pilot study. The Occupational Therapy Journal of Research, 20(3):200– 215.; [Park and Kwak, 2016] Park, S. and Kwak, N. (2016). Analysis on the dropout effect in convolutional neural networks. In Asian conference on computer vision, pages 189–204. Springer.; [Parvan et al., 2019] Parvan, M., Ghiasi, A., Rezaii, T., and Farzamnia, A. (2019). Transfer learning based motor imagery classification using convolutional neural networks. In 2019 27th Iranian Conference on Electrical Engineering (ICEE), pages 1825–1828.; [Petrichella et al., 2016] Petrichella, S., Vollere, L., Ferreri, F., Guerra, A., M¨a¨atta, S., K¨on¨onen, M., Di Lazzaro, V., and Iannello, G. (2016). Channel interpolation in tmseeg: A quantitative study towards an accurate topographical representation. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 989–992.; [Pfurtscheller et al., 2006] Pfurtscheller, G., Brunner, C., Schl¨ogl, A., and Da Silva, F. (2006). Mu rhythm (de) synchronization and eeg single-trial classification of different motor imagery tasks. NeuroImage, 31(1):153–159.; [Pillette et al., 2019] Pillette, L., Jeunet, C., N’Kambou, R., N’Kaoua, B., and Lotte, F. (2019). Towards artificial learning companions for mental imagery-based brain-computer interfaces.; [Proakis, 2001] Proakis, J. G. (2001). Digital signal processing: principles algorithms and applications. Pearson Education India.; [Qian et al., 2018] Qian, X., Loo, B., Castellanos, F., Liu, S., Koh, H., Poh, X., Krishnan, R., Fung, D., Chee, M., Guan, C., et al. (2018). Brain-computer-interface-based intervention re-normalizes brain functional network topology in children with attention deficit/hyperactivity disorder. Translational psychiatry, 8(1):1–11.; [Qin et al., 2018] Qin, Z., Yu, F., Liu, C., and Chen, X. (2018). How convolutional neural network see the world - a survey of convolutional neural network visualization methods.; [Ras et al., 2018] Ras, G., van Gerven, M., and Haselager, P. (2018). Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges, pages 19–36. Springer International Publishing, Cham; [Ren et al., 2020] Ren, S., Wang, W., Hou, Z., Liang, X., Wang, J., and Shi, W. (2020). Enhanced motor imagery based brain-computer interface via fes and vr for lower limbs. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(8):1846–1855.; [Rezeika et al., 2018] Rezeika, A., Benda, M., Stawicki, P., Gembler, F., Saboor, A., and Volosyak, I. (2018). Brain–computer interface spellers: A review. Brain sciences, 8(4):57.; [Rim et al., 2020] Rim, B., Sung, N., Min, S., and Hong, M. (2020). Deep learning in physiological signal data: A survey. Sensors, 20(4).; [Rimbert et al., 2019] Rimbert, S., Gayraud, N., Bougrain, L., Clerc, M., and Fleck, S. (2019). Can a subjective questionnaire be used as brain-computer interface performance predictor? Frontiers in Human Neuroscience, 12:529.; [Rong et al., 2020] Rong, Y., Wu, X., and Zhang, Y. (2020). Classification of motor imagery electroencephalography signals using continuous small convolutional neural network. International Journal of Imaging Systems and Technology, 30(3):653–659.; [Roth et al., 1996] Roth, M., Decety, J., Raybaudi, M., Massarelli, R., Delon-Martin, C., Segebarth, C., Morand, S., Gemignani, A., D´ecorps, M., and Jeannerod, M. (1996). Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study. Neuroreport, 7(7):1280–1284.; [Roy et al., 2020] Roy, S., Chowdhury, A., McCreadie, K., and Prasad, G. (2020). Deep learning based inter-subject continuous decoding of motor imagery for practical braincomputer interfaces. Frontiers in Neuroscience, 14.; [Saha et al., 2018] Saha, S., Ahmed, K., Mostafa, R., Hadjileontiadis, L., and Khandoker, A. (2018). Evidence of variabilities in eeg dynamics during motor imagery-based multiclass brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(2):371–382.; [Saha and Baumert, 2020] Saha, S. and Baumert, M. (2020). Intra-and inter-subject variability in eeg-based sensorimotor brain computer interface: a review. Frontiers in computational neuroscience, 13:87.; [Sakhavi et al., 2015] Sakhavi, S., Guan, C., and Yan, S. (2015). Parallel convolutional-linear neural network for motor imagery classification. In 2015 23rd European Signal Processing Conference (EUSIPCO), pages 2736–2740.; [Sannelli et al., 2016] Sannelli, C., Vidaurre, C., M¨uller, K., and Blankertz, B. (2016). Ensembles of adaptive spatial filters increase bci performance: an online evaluation. Journal of neural engineering, 13(4):046003.; [Sannelli et al., 2019] Sannelli, C., Vidaurre, C., M¨uller, K., and Blankertz, B. (2019). A large scale screening study with a smr-based bci: Categorization of bci users and differencesn in their smr activity. PLoS One, 14(1):e0207351.; [Schalk et al., 2004] Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N., and Wolpaw, J. (2004). Bci2000: a general-purpose brain-computer interface (bci) system. IEEE Transactions on biomedical engineering, 51(6):1034–1043.; [Sch¨olkopf et al., 2002] Sch¨olkopf, B., Smola, A., Bach, F., et al. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.; [Seghier and Price, 2018] Seghier, M. and Price, C. (2018). Interpreting and utilising intersubject variability in brain function. Trends in Cognitive Sciences, 22(6):517–530.; [Selvaraju et al., 2017] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626.; [Selvaraju et al., 2016] Selvaraju, R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., and Batra, D. (2016). Grad-cam: Why did you say that? arXiv preprint arXiv:1611.07450.; [Shahtalebi et al., 2020] Shahtalebi, S., Asif, A., and Mohammadi, A. (2020). Siamese neural networks for eeg-based brain-computer interfaces. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 442– 446. IEEE.; [Shajil et al., 2020] Shajil, N., Mohan, S., Srinivasan, P., Arivudaiyanambi, J., and Murrugesan, A. (2020). Multiclass classification of spatially filtered motor imagery eeg signals using convolutional neural network for bci based applications. Journal of Medical and Biological Engineering, 40(5):663–672.; [Shen et al., 2017] Shen, Y., Lu, H., and Jia, J. (2017). Classification of motor imagery eeg signals with deep learning models. In Sun, Y., Lu, H., Zhang, L., Yang, J., and Huang, H., editors, Intelligence Science and Big Data Engineering, pages 181–190, Cham. Springer International Publishing.; [Singh et al., 2021] Singh, A., Hussain, A., Lal, S., and Guesgen, H. (2021). A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors, 21(6).; [Skola et al., 2019] ˇ Skola, F., Tinkov´a, S., and Liarokapis, F. (2019). Progressive training for motor imagery brain-computer interfaces using gamification and virtual reality embodiment. Frontiers in human neuroscience, 13:329.; [Song et al., 2013] Song, L., Fukumizu, K., and Gretton, A. (2013). Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric inference in graphical models. IEEE Signal Processing Magazine, 30(4):98–111.; [Souto et al., 2020] Souto, D., Cruz, T., Fontes, P., Batista, R., and Haase, V. (2020). Motor imagery development in children: Changes in speed and accuracy with increasing age. Frontiers in Pediatrics, 8.; [Spezialetti et al., 2018] Spezialetti, M., Cinque, L., Tavares, J., and Placidi, G. (2018). Towards eeg-based bci driven by emotions for addressing bci illiteracy: a meta-analytic review. Behaviour & Information Technology, 37(8):855–871.; [Springenberg et al., 2014] Springenberg, J., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.; [Stasiak et al., 2018] Stasiak, B., Opa lka, S., Szajerman, D., and Wojciechowski, A. (2018). Eeg-based mental task classification with convolutional neural networks–parallel vs 2d data representation. In International Conference on Information Technologies in Biomedicine, pages 549–560. Springer.; [Tabar and Halici, 2016] Tabar, Y. R. and Halici, U. (2016). A novel deep learning approach for classification of eeg motor imagery signals. Journal of neural engineering, 14(1):016003.; [Taheri et al., 2020] Taheri, S., Ezoji, M., and Sakhaei, S. (2020). Convolutional neural network based features for motor imagery eeg signals classification in brain–computer interface system. SN Applied Sciences, 2(4):1–12.; [Tan et al., 2018] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). A survey on deep transfer learning. In K˚urkov´a, V., Manolopoulos, Y., Hammer, B., Iliadis, L., and Maglogiannis, I., editors, Artificial Neural Networks and Machine Learning– ICANN 2018, pages 270–279, Cham. Springer International Publishing.; [Tang et al., 2020] Tang, X., Li, W., Li, X., Ma, W., and Dang, X. (2020). Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multiscale convolutional neural network. Expert Systems with Applications, 149:113285.; [Taran and Bajaj, 2019] Taran, S. and Bajaj, V. (2019). Motor imagery tasks-based eeg signals classification using tunable-q wavelet transform. Neural Computing and Applications, 31(11):6925–6932.; [Thodoroff et al., 2016] Thodoroff, P., Pineau, J., and Lim, A. (2016). Learning robust features using deep learning for automatic seizure detection. In Doshi-Velez, F., Fackler, J., Kale, D., Wallace, B., and Wiens, J., editors, Proceedings of the 1st Machine Learning for Healthcare Conference, volume 56 of Proceedings of Machine Learning Research, pages 178–190, Northeastern University, Boston, MA, USA. PMLR.; [Thompson, 2019] Thompson, M. (2019). Critiquing the concept of bci illiteracy. Science and engineering ethics, 25(4):1217–1233.; [Tilgner et al., 2021] Tilgner, S., Wagner, D., Kalischewski, K., Schmitz, J., and Kummert, A. (2021). Study on the influence of multiple image inputs of a multi-view fusion neural network based on grad-cam and masked image inputs. In 2020 28th European Signal Processing Conference (EUSIPCO), pages 1427–1431. IEEE.; [Uktveris and Jusas, 2017] Uktveris, T. and Jusas, V. (2017). Application of convolutional neural networks to four-class motor imagery classification problem. Information Technology and Control, 46(2):260–273.; [Ulsamer et al., 2020] Ulsamer, P., Fertig, T., Pfeffel, K., and M¨uller, N. (2020). Motor imagery to control mobile applications-an fnirs study. In PACIS, page 56.; [Vasilyev et al., 2021] Vasilyev, A., Nuzhdin, Y., and Kaplan, A. (2021). Does real-time feedback affect sensorimotor eeg patterns in routine motor imagery practice? Brain Sciences, 11(9):1234.; [Velasquez-Martinez et al., 2020a] Velasquez-Martinez, L., Caicedo-Acosta, J., AcostaMedina, C., Alvarez-Meza, A., and Castellanos-Dominguez, G. (2020a). Regression networks for neurophysiological indicator evaluation in practicing motor imagery tasks. Brain Sciences, 10(10):707.; [Velasquez-Martinez et al., 2020b] Velasquez-Martinez, L., Caicedo-Acosta, J., and Castellanos-Dominguez, G. (2020b). Entropy-based estimation of event-related de/synchronization in motor imagery using vector-quantized patterns. Entropy, 22(6):703.; [Versaci et al., 2020] Versaci, M., Angiulli, G., di Barba, P., and Morabito, F. (2020). Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates. Open Physics, 18(1):230–240.; [Vidaurre et al., 2019] Vidaurre, C., Murguialday, A., Haufe, S., G´omez, M., M¨uller, K.-R., and Nikulin, V. (2019). Enhancing sensorimotor bci performance with assistive afferent activity: An online evaluation. NeuroImage, 199:375–386.; [Wan et al., 2021] Wan, Z., Yang, R., Huang, M., Zeng, N., and Liu, X. (2021). A review on transfer learning in eeg signal analysis. Neurocomputing, 421:1–14.; [Wang et al., 2020a] Wang, H., Naidu, R., Michael, J., and Kundu, S. (2020a). Sscam: Smoothed score-cam for sharper visual feature localization. arXiv preprint arXiv:2006.14255.; [Wang et al., 2020b] Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., Mardziel, P., and Hu, X. (2020b). Score-cam: Score-weighted visual explanations for convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 24–25.; [Wang et al., 2020c] Wang, J., Feng, Z., Ren, X., Lu, N., Luo, J., and Sun, L. (2020c). Feature subset and time segment selection for the classification of eeg data based motor imagery. Biomedical Signal Processing and Control, 61:102026.; [Wang et al., 2020d] Wang, L., Huang, W., Yang, Z., and Zhang, C. (2020d). Temporalspatial-frequency depth extraction of brain-computer interface based on mental tasks. Biomedical Signal Processing and Control, 58:101845.; [Wang et al., 2018] Wang, S., Fu, L., Yao, J., and Li, Y. (2018). The application of deep learning in biomedical informatics. In 2018 International Conference on Robots Intelligent System (ICRIS), pages 391–394.; [Wang et al., 2021] Wang, T., Du, S., and Dong, E. (2021). A novel method to reduce the motor imagery bci illiteracy. Medical & Biological Engineering & Computing, 59(11):2205–2217.; [Wang et al., 2019] Wang, Y., Nakanishi, M., and Zhang, D. (2019). EEG-Based BrainComputer Interfaces, pages 41–65. Springer Singapore, Singapore.; [Wehner et al., 1984] Wehner, T., Vogt, S., and Stadler, M. (1984). Task-specific emgcharacteristics during mental training. Psychological research, 46(4):389–401.; [Wei and Lin, 2020] Wei, M. and Lin, F. (2020). A novel multi-dimensional features fusion algorithm for the eeg signal recognition of brain’s sensorimotor region activated tasks. International Journal of Intelligent Computing and Cybernetics.; [Wei et al., 2021] Wei, X., Ortega, P., and Faisal, A. (2021). Inter-subject deep transfer learning for motor imagery eeg decoding. In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), pages 21–24.; [Wu et al., 2021] Wu, D., Jiang, X., Peng, R., Kong, W., Huang, J., and Zeng, Z. (2021). Transfer learning for motor imagery based brain-computer interfaces: A complete pipeline.; [Wu et al., 2019] Wu, H., Niu, Y., Li, F., Li, Y., Fu, B., Shi, G., and Dong, M. (2019). A parallel multiscale filter bank convolutional neural networks for motor imagery eeg classification. Frontiers in Neuroscience, 13:1275.; [Wuyam et al., 1995] Wuyam, B., Moosavi, S., Decety, J., Adams, L., Lansing, R., and Guz, A. (1995). Imagination of dynamic exercise produced ventilatory responses which were more apparent in competitive sportsmen. The Journal of physiology, 482(3):713–724.; [Xiao et al., 2018] Xiao, C., Choi, E., and Sun, J. (2018). Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. Journal of the American Medical Informatics Association, 25(10):1419–1428.; [Xu et al., 2019] Xu, G., Shen, X., Chen, S., Zong, Y., Zhang, C., Yue, H., Liu, M., Chen, F., and Che, W. (2019). A deep transfer convolutional neural network framework for eeg signal classification. IEEE Access, 7:112767–112776.; [Xu et al., 2020a] Xu, J., Zheng, H., Wang, J., Li, D., and Fang, X. (2020a). Recognition of eeg signal motor imagery intention based on deep multi-view feature learning. Sensors, 20(12):3496.; [Xu et al., 2020b] Xu, L., Xu, M., Ke, Y., An, X., Liu, S., and Ming, D. (2020b). Crossdataset variability problem in eeg decoding with deep learning. Frontiers in human neuroscience, 14:103.; [Xu et al., 2021] Xu, L., Xu, M., Ma, Z., Wang, K., Jung, T., and Ming, D. (2021). Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization. Journal of Neural Engineering, 18(4):0460e5.; [Xu et al., 2020c] Xu, M., Wei, Z., and Ming, D. (2020c). Research advancements of motor imagery for motor function recovery after stroke. Sheng wu yi xue gong cheng xue za zhi= Journal of biomedical engineering= Shengwu yixue gongchengxue zazhi, 37(1):169–173.; [Xu et al., 2020d] Xu, M., Yao, J., Zhang, Z., Li, R., Yang, B., Li, C., Li, J., and Zhang, J. (2020d). Learning eeg topographical representation for classification via convolutional neural network. Pattern Recognition, 105:107390.; [Yang et al., 2015] Yang, H., Sakhavi, S., Ang, K. K., and Guan, C. (2015). On the use of convolutional neural networks and augmented csp features for multi-class motor imagery of eeg signals classification. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2620–2623.; [Yang et al., 2018] Yang, J., Yao, S., and Wang, J. (2018). Deep fusion feature learning network for mi-eeg classification. IEEE Access, 6:79050–79059.; [Yang et al., 2019] Yang, X., Liu, W., Liu, W., and Tao, D. (2019). A survey on canonical correlation analysis. IEEE Transactions on Knowledge and Data Engineering, 33(6):2349–2368.; [Yi et al., 2020] Yi, C., Chen, C., Si, Y., Li, F., Zhang, T., Liao, Y., Jiang, Y., Yao, D., and Xu, P. (2020). Constructing large-scale cortical brain networks from scalp eeg with bayesian nonnegative matrix factorization. Neural Networks, 125:338–348.; [Yoon and Lee, 2020] Yoon, J. and Lee, M. (2020). Effective correlates of motor imagery performance based on default mode network in resting-state. In 2020 8th International Winter Conference on Brain-Computer Interface (BCI), pages 1–5.; [You et al., 2020] You, Y., Chen, W., and Zhang, T. (2020). Motor imagery eeg classification based on flexible analytic wavelet transform. Biomedical Signal Processing and Control, 62:102069.; [Yu et al., 2022] Yu, H., Ba, S., Guo, Y., Guo, L., and Xu, G. (2022). Effects of motor imagery tasks on brain functional networks based on eeg mu/beta rhythm. Brain Sciences, 12(2):194.; [Zeiler and Fergus, 2014a] Zeiler, M. and Fergus, R. (2014a). Visualizing and understanding convolutional networks. In Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T., editors, Computer Vision – ECCV 2014, pages 818–833, Cham. Springer International Publishing.; [Zeiler and Fergus, 2014b] Zeiler, M. and Fergus, R. (2014b). Visualizing and understanding convolutional networks. In European conference on computer vision, pages 818–833. Springer.; [Zhang et al., 2021a] Zhang, H., Zhao, X., Wu, Z., Sun, B., and Li, T. (2021a). Motor imagery recognition with automatic eeg channel selection and deep learning. Journal of Neural Engineering, 18(1):016004.; [Zhang et al., 2021b] Zhang, K., Robinson, N., Lee, S., and Guan, C. (2021b). Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network. Neural Networks, 136:1–10.; [Zhang et al., 2020a] Zhang, K., Xu, G., Chen, L., Tian, P., Han, C., Zhang, S., and Duan, N. (2020a). Instance transfer subject-dependent strategy for motor imagery signal classification using deep convolutional neural networks. Computational and Mathematical Methods in Medicine, 2020.; [Zhang et al., 2020b] Zhang, K., Xu, G., Zheng, X., Li, H., Zhang, S., Yu, Y., and Liang, R. (2020b). Application of transfer learning in eeg decoding based on brain-computer interfaces: A review. Sensors, 20(21).; [Zhang et al., 2019a] Zhang, R., Zong, Q., Dou, L., and Zhao, X. (2019a). A novel hybrid deep learning scheme for four-class motor imagery classification. Journal of neural engineering, 16(6):066004.; [Zhang et al., 2021c] Zhang, R., Zong, Q., Dou, L., Zhao, X., Tang, Y., and Li, Z. (2021c). Hybrid deep neural network using transfer learning for eeg motor imagery decoding. Biomedical Signal Processing and Control, 63:102144.; [Zhang et al., 2019b] Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019b). Deep learning based recommender system: A survey and new perspectives. ACM Comput. Surv., 52(1).; [Zhang et al., 2021d] Zhang, X., Yao, L., Wang, X., Monaghan, J., McAlpine, D., and Zhang, Y. (2021d). A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. Journal of Neural Engineering, 18(3):031002.; [Zhang et al., 2015] Zhang, Y., Zhou, G., Jin, J., Wang, X., and Cichocki, A. (2015). Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface. Journal of neuroscience methods, 255:85–91.; [Zhao et al., 2019a] Zhao, D., Tang, F., Si, B., and Feng, X. (2019a). Learning joint space–time–frequency features for eeg decoding on small labeled data. Neural Networks, 114:67–77.; [Zhao et al., 2019b] Zhao, X., Zhang, H., Zhu, G., You, F., Kuang, S., and Sun, L. (2019b). A multi-branch 3d convolutional neural network for eeg-based motor imagery classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(10):2164–2177.; [Zhao et al., 2020] Zhao, X., Zhao, J., Liu, C., and Cai, W. (2020). Deep neural network with joint distribution matching for cross-subject motor imagery brain-computer interfaces. BioMed research international, 2020.; [Zheng et al., 2021] Zheng, M., Yang, B., Gao, S., and Meng, X. (2021). Spatio-timefrequency joint sparse optimization with transfer learning in motor imagery-based braincomputer interface system. Biomedical Signal Processing and Control, 68:102702.; [Zheng et al., 2020] Zheng, M., Yang, B., and Xie, Y. (2020). Eeg classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system. Medical & biological engineering & computing, 58(7).; [Zhou et al., 2016] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).; [Zhou et al., 2014] Zhou, B., Wu, X., Zhang, L., Lv, Z., and Guo, X. (2014). Robust spatial filters on three-class motor imagery eeg data using independent component analysis. Journal of Biosciences and Medicines, 2(2):43–49.; [Zhuang et al., 2020] Zhuang, M., Wu, Q., Wan, F., and Hu, Y. (2020). State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review. Journal of Neurorestoratology, 8(1):4.; [Zimmermann-Schlatter et al., 2008] Zimmermann-Schlatter, A., Schuster, C., Puhan, M., Siekierka, E., and Steurer, J. (2008). Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. Journal of neuroengineering and rehabilitation, 5(1):1–10.; https://repositorio.unal.edu.co/handle/unal/84594Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/