يعرض 1 - 10 نتائج من 19 نتيجة بحث عن '"Riqueza de Especies"', وقت الاستعلام: 0.88s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Caldasia; Vol. 41 Núm. 2 (2019); 370-379 ; Caldasia; Vol. 41 No. 2 (2019); 370-379 ; 2357-3759 ; 0366-5232

    وصف الملف: application/pdf; application/xml

    العلاقة: https://revistas.unal.edu.co/index.php/cal/article/view/67869/70651Test; https://revistas.unal.edu.co/index.php/cal/article/view/67869/72544Test; Aguirre N, Ojeda-Luna, Eguiguren P, Aguirre-Mendoza Z, editores. 2015. Cambio climático y Biodiversidad: Estudio de caso de los páramos del Parque Nacional Podocarpus, Ecuador. Loja, Ecuador: Programa de biodiversidad y Servicios Ecosistémicos. Universidad Nacional de Loja.; Ah-Peng C, Chuah-Petiot M, Descamps-Julien B, Bardat J, Stamenoff P, Strasberg D. 2007. Bryophyte diversity and distribution along an altitudinal gradient on a lava flow in La Réunion. Divers. Distrib. 13(5):654–662. doi: https://dx.doi.org/10.1111/j.1472-4642.2007.00393.xTest.; Anderson MJ, Legendre P. 1999. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J. Stat. Comput. Simul. 62(3):271–303. doi: https://dx.doi.org/10.1080/00949659908811936Test.; Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth, UK: PRIMER-E.; Anthelme F, Dangles O. 2012. Plant-plant interactions in tropical alpine environments. Perspect Plant Ecol. Evol. Syst. 14(5):363–372. doi: https://dx.doi.org/10.1016/j.ppees.2012.05.002Test.; Balslev H, Luteyn JL. 1992. Páramo. An Andean ecosystem under human influence. London: Academic Press. Beltrán K, Salgado S, Cuesta F, León-Yánez S, Romoleroux K, Ortiz E, Cárdenas A, Velástegui A. 2009. Distribución espacial, sistemas ecológicos y caracterización florística de los páramos en el Ecuador. Quito, Ecuador: EcoCiencia. Proyecto Páramo Andino y Herbario QCA.; Benavides JC, Duque-M AJ, Duivenvoorden JF, Cleef AM. 2006. Species richness and distribution of understorey bryophytes in different forest types in Colombian Amazonia. J. Bryol. 28(3):182–189. doi: https://dx.doi.org/10.1179/174328206X120040Test.; Benítez A, Prieto M, Aragón G. 2015. Large trees and dense canopies: Key factors for maintaining high epiphytic diversity on trunk bases (bryophytes and lichens) in tropical montane forests. Forestry 88(5):521–527. doi: https://dx.doi.org/10.1093/forestry/cpv022Test.; Bruun HH, Moen J, Virtanen R, Grytnes JA, Oksanen L, Angerbjörn A. 2006. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17(1):37–46. doi: https://dx.doi.org/10.1111/j.1654-1103.2006.tb02421.xTest.; Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J, Hofstede R. 2006. Human impact on the hydrology of the Andean páramos. Earth Sci. Rev. 79(1–2):53–72. doi: https://dx.doi.org/10.1016/j.earscirev.2006.06.002Test.; Castillo-Monroy AP, Benítez Á, Reyes-Bueno F, Donoso DA, Cueva A. 2016. Biocrust structure responds to soil variables along a tropical scrubland elevation gradient. J. Arid. Environ. 124:31–38. doi: https://dx.doi.org/10.1016/j.jaridenv.2015.06.015Test.; Cataño-D E, Uribe-M J, Campos LV. 2014. Diversidad de hepáticas y musgos en turberas del nevado del Tolima, Colombia. Caldasia 36(2):217–229. doi: https://dx.doi.org/10.15446/caldasia.v36n2.47479Test.; Churchill SP. c2019. Andean Bryophytes. [Revisada en: 02 Feb 2019] http://www.tropicos.org/Project/ANBRYTest; Churchill SP, Griffin D. 1999. Mosses. En: Luteyn J, editor. Páramos: A checklists of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden. Volumen 84. New York: The new York Botanical Garden. p. 53–64.; Cogoni A, Brundu G, Zedda L. 2011. Diversity and ecology of terricolous bryophyte and lichen communities in coastal areas of Sardinia (Italy). Nova Hedwigia 92(1–2):159–175. doi: https://dx.doi.org/10.1127/0029-5035/2011/0092-0159Test.; Colwell RK. c2013. EstimateS: statistical estimation of species richness and shared species from samples. [Revisada en: 02 Feb 2019] http://viceroy.colorado.edu/estimates/EstimateSPages/EstimateSRegistration.htmTest; Cuesta F, Muriel P, Llambí LD, Halloy S, Aguirre N, Beck S, Carilla J, Meneses RI, Cuello S, Grau A, Gámez LE, Irázabal J, Jácome J, Jaramillo R, Ramírez L, Samaniego N, Suárez-Duque D, Thompson N, Tupayachi A, Viñas P, Yager K, Becerra MT, Pauli H, Gosling WD. 2017. Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 40(12):1381–1394. doi: https://dx.doi.org/10.1111/ecog.02567Test.; Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67(3):345–366. doi: http://dx.doi.org/10.1890/0012-9615Test(1997)067%5B0345:SAAIST%5D2.0.CO;2.; Eguiguren P, Ojeda-Luna T, Aguirre N. 2015. Parte IV: Línea base para el monitoreo de los impactos del cambio climático. Patrones de diversidad florística a lo largo de la gradiente altitudinal del páramo del Parque Nacional Podocarpus. En: Aguirre N, Ojeda-Luna, Eguiguren P, Aguirre-Mendoza Z, editores. Cambio climático y Biodiversidad: Estudio de caso de los páramos del Parque Nacional Podocarpus, Ecuador. Loja, Ecuador: Programa de biodiversidad y Servicios Ecosistémicos. Universidad Nacional de Loja. p. 145–168.; Eldridge DJ, Tozer ME. 1997. Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid eastern Australia. Bryologist 100(1):28–39. doi: https://dx.doi.org/10.2307/3244384Test.; Erschbamer B, Mallaun M, Unterluggauer P, Abdaladze O, Akhalkatsi M, Nakhutsrishvili G. 2010. Plant diversity along altitudinal gradients in the central alps (South Tyrol, Italy) and in the central greater Caucasus (Kazbegi region, Georgia). Tuexenia 30(1):11–29.; Garcia-Pichel F, Belnap J. 2001. Small-scale environments and distribution of biological soil crusts. En: Belnap J, Lange OL, editores. Biological soil crusts: Structure, function, and management. Berlin: Springer-Verlag. p. 193–201.; Gignac LD. 2001. Bryophytes as indicators of climate change. Bryologist 104(3):410–420. doi: http://dx.doi.org/10.1639/0007-2745Test(2001)104%5B0410:BAIOCC%5D2.0.CO;2.; González Y, Aragón G, Benítez A, Prieto M. 2017. Changes in soil cryptogamic communities in tropical Ecuadorean páramos. Community Ecol. 18(1):11–20. doi: https://dx.doi.org/10.1556/168.2017.18.1.2Test.; Gradstein SR. 1998. Hepatic diversity in the neotropical páramos. Monogr. Syst. Bot. Missouri Bot. Garden 68:69–85.; Gradstein SR. 1999. Hepatics. En: Luteyn JL, editor. Páramos: A checklist of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden. Volumen 84. New York: The New York Botanical Garden. p. 65–73.; Gradstein SR. 2016. The genus Plagiochila (Marchantiophyta) in Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 40(154):104–136. doi: https://dx.doi.org/10.18257/raccefyn.272Test.; Gradstein SR, Benitez A. 2016. Liverworts New to Ecuador with Description of Plagiochila priceana sp. nov. and Syzygiella burghardtii sp. nov. Cryptogamie Bryol. 38(4):335–349. doi: https://dx.doi.org/10.7872/cryb/v38.iss4.2017.335Test.; Gradstein SR, Churchill SP, Salazar-Allen N. 2001. Guide to the bryophytes of tropical America. Memoirs of the New York Botanical Garden. Volumen 87. New York: The New York Botanical Garden.; Hofstede R. 2001. El impacto de las actividades humanas sobre el páramo. En: Mena-Vásconez P, Medina G, Hofstede R, editores. Los páramos del Ecuador. Particularidades, problemas y perspectivas. Quito, Ecuador: Abya Yala, Proyecto Páramo. p. 161–185.; Hofstede R, Segarra P, Mena Vásconez P, editores. 2003. Los páramos del mundo. Proyecto Atlas Mundial de los Páramos. Quito, Ecuador: Global Peatland Initiative, NC-IUCN, EcoCiencia.; Luteyn JL, editor. 1999. Páramos: A checklist of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden. Volumen 84. New York: The New York Botanical Garden.; Mandl NA, Kessler M, Gradstein SR. 2009. Effects of environmental heterogeneity on species diversity and composition of terrestrial bryophyte assemblages in tropical montane forests of southern Ecuador. Pl. Ecol. Divers. 2(3):313–321. doi: https://dx.doi.org/10.1080/17550870903341877Test.; Mandl NA, Lehnert M, Kessler M, Gradstein SR. 2010. A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern Ecuador. Biodivers. Conserv. 19(8):2359–2369. doi: https://dx.doi.org/10.1007/s10531-010-9839-4Test.; Matson EC, Bart DJ. 2014. Plant–community responses to shrub cover in a páramo grassland released from grazing and burning. Austral Ecol. 39(8):918–928. doi: https://doi.org/10.1111/aec.12157Test.; McCune B, Grace J, Urban D. 2002. MRPP (multi-response permutation procedures) in analysis of ecological communities. Oregon, USA: MjM Software Design.; Mena-Vásconez P, Medina G, Hofstede R, editores. 2001. Los páramos del Ecuador: particularidades, problemas y perspectivas. Quito, Ecuador: Abya Yala, Proyecto Páramo.; Nöske NM, Hilt N, Werner FA, Brehm G, Fiedler K, Sipman HJM, Gradstein SR. 2008. Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic Appl. Ecol. 9(1):4–12. doi: https://dx.doi.org/10.1016/j.baae.2007.06.014Test.; Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens H, Wagner H. 2013. Vegan: Community Ecology Package. Vienna, Austria: R Foundation for Statistical Computing.; Pauli H, Gottfried M, Hohenwallner D, Hüber K, Reiter K, Grabherr G. 2004. The GLORIA Field Manual – Multi-Summit Approach. Vienna, Austria: University of Vienna, Department of Vegetation Ecology Conversation Biology, Insitute of Ecology/Conservation Biology.; Pauli H, Gottfried M, Lamprecht A, Niessner S, Rumpf S, Winkle M, Steinbauer K, Grabherr G. 2015. The GLORIA field manual—standard multi-summit approach, supplementary methods and extraapproaches. Vienna, Austria: GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences.; R Core Development Team. c2014. A language and environment for statistical computing. Foundation for Statistical Computing. [Revisada en: 02 Feb 2019]. http://www.R-project.orgTest; Ramsay PM, Oxley ERB. 1996. Fire temperatures and postfire plant community dynamics in Ecuadorian grass páramo. Pl. Ecol. 124(2):129–144.; Sklenár P, Balslev H. 2005. Superpáramo plant species diversity and phytogeography in Ecuador. Flora 200:416–433. doi: https://dx.doi.org/10.1016/j.flora.2004.12.006Test.; Sklenár P, Ramsay PM. 2001. Diversity of zonal páramo plant communities in Ecuador. Divers. Distrib. 7(3):113–124. doi: https://dx.doi.org/10.1046/j.1472-4642.2001.00101.xTest.; Sun SQ, Liu T, Wu YH, Wang GX, Zhu B, DeLuca T, Wang YQ, Luo J. 2017. Ground bryophytes regulate net soil carbon efflux: evidence from two subalpine ecosystems on the east edge of the Tibet Plateau. Plant Soil 417(1–2):363–375. doi: https://dx.doi.org/10.1007/s11104-017-3264-3Test.; Sun SQ, Wu YH, Wang GX, Zhou J, Yu D, Bing HJ, Luo J. 2013. Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain, China. PLoS ONE 8(3):e58131. doi: https://dx.doi.org/10.1371/journal.pone.0058131Test.; Urgiles-Gómez N, Santin J, Cevallos P, Aguirre N. 2015. Diversidad de briófitos de los Páramos de Cajanuma del Parque Nacional Podocarpus. En: Aguirre N, Ojeda-Luna, Eguiguren P, Aguirre-Mendoza Z, editores. Cambio climático y Biodiversidad: Estudio de caso de los páramos del Parque Nacional Podocarpus, Ecuador. Loja, Ecuador: Programa de biodiversidad y Servicios Ecosistémicos. Universidad Nacional de Loja. p. 188–211.; Vanneste T, Michelsen O, Graae BJ, Kyrkjeeide MO, Holien H, Hassel K, Lindmo S, Erzsebet Kapás R, De Frenne P. 2017. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32(4):579–593. doi: https://dx.doi.org/10.1007/s11284-017-1472-1Test.; Vittoz P, Camenisch M, Mayor R, Miserere L, Vust M, Theurillat JP. 2010. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120(2):139–149. doi: https://dx.doi.org/10.1007/s00035-010-0079-8Test.; https://revistas.unal.edu.co/index.php/cal/article/view/67869Test

  2. 2
    دورية أكاديمية

    المؤلفون: Loaiza Gómez, Camilo

    المصدر: Caldasia; Vol. 39 Núm. 2 (2017); 310-325 ; Caldasia; Vol. 39 No. 2 (2017); 310-325 ; 2357-3759 ; 0366-5232

    وصف الملف: application/pdf; application/xml

    العلاقة: https://revistas.unal.edu.co/index.php/cal/article/view/60647/63188Test; https://revistas.unal.edu.co/index.php/cal/article/view/60647/66518Test; Blake JG, Loiselle B.A. 2000. Diversity of birds along an elevational gradient in the cordillera central, Costa Rica. Auk 117(3):663–686.; Boulinier T, Nichols JD, Sauer JR, J.E. Hines JE, Pollock KH. 1998. Estimating Species Richness: The Importance of Heterogeneity in Species Detectability. Ecology 79(3):1018–1028.; Colwell RK, Coddington JA. 1994. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 345(1311):101–118.; Collwell RK, Lees DC. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15(2):70–76.; Conroy MJ, Noon BR. 1996. Mapping of species richness for conservation of biological diversity: conceptual and methodological issues. Ecol. Appl. 6:763–773.; Cumming G, Fidler F, Vaux DL. 2007. Error bars in experimental biology. J Cell. Biol. 177(1):7–11. doi:10.1083/jcb.200611141; Fleishman E, Noss R, Noon BR. 2006. Utility and limitations of species richness metrics for conservation planning. Ecol. Indic. 6:543–553. doi:10.1016/j.ecolind.2005.07.005.; Gaston KJ. 1996. Biodiversity: a biology by numbers and difference. Oxford, UK: Blackwell Science. Species richness: measure and measurement. p. 77–113.; Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1):9.; Hartshorn GS. 1983. Plants. En: Janzen DH, editor. Costa Rica natural history. Chicago: University of Chicago Press. p. 118–157.; Hines JE, Boulinier T, Nichols JD, Sauer JR, Pollock KH. 1999. COMDYN: Software to study the dynamics of animal communities using a capture-recapture approach. Bird Study. 46:209–217.; Holdrige LR. 1967. Life zone ecology. Tropical Science Center, San José, Costa Rica.; Huste A, Boulinier T. 2007. Determinants of local extinction and turnover rates in urban bird communities. Ecol. Appl. 17(1):168–180.; Kery M, Schmid H. 2004. Monitoring programs need to take into account imperfect species detectability. Basic. Appl. Ecol. 5:65–73.; Kery M, Schmid H. 2006. Estimating species richness: calibrating a large avian monitoring program. J. Appl. Ecol. 43(1):101–110. doi:10.1111/j.1365-2664.2005.01111.x.; Kery M, Royle JA. 2008. Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys. J. Appl. Ecol. 45(2):589–598. doi:10.1111/j.1365-2664.2007.01441.x.; Kery M, Royle JA. 2009. Inference about species richness and community structure using species-specific occupancy models in the national Swiss breeding bird survey MHB. En: Thomson DL, Gooch EG, Conroy MJ, editores. Modeling demographic processes in marked populations. Series: Environmental and Ecological Statistics. Volume 3. New York, USA: Springer. p. 639–656.; Kery M, Royle JA, Plattner M, Dorazio RM. 2009. Species richness and occupancy estimation in communities subject to temporary emigration. Ecology. 90(5): 1279-1290.; Levey DJ. 1988. Spatial and temporal variation in costa rican fruit and fruit-eating bird abundance. Ecol. Monogr. 58(4): 251-269.; Magurran AE. 1988. Ecological diversity and its measurement. New Jersey, USA: Princeton University Press.; Myers N, Mittermeier RA, Mittermeier CG, Dafonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature. 403:853–858. doi:10.1038/35002501.; Nichols JD, Boulinier T, Hines JE, Pollock KH, Sauer JR. 1998a. Inference methods for Spatial Variation in species richness and community composition when not all species are detected. Conserv. Biol. 12(6):1390–1398.; Nichols JD, Boulinier T, Hines JE, Pollock KH, Sauer JR. 1998b. Estimating Rates of Local Species Extinction, Colonization, and Turnover in Animal Communities. Ecol. Appl. 8(4): 1213–1225.; Nichols JD, Hines JE, Sauer JR, Boulinier T, Cam E. 2006. Intra-guild compensation regulates species richness in desert rodents: comment. Ecology. 87:2118–2121; Nullet D, Juvik JO. 1994. Generalized mountain evaporation profiles for tropical and subtropical latitudes. Singapore J. Trop. Geo. 15:17–24. doi:10.1111/j.1467-9493.1994.tb00242.x; Patterson BD, Stotz DF, Solari S, Fitzpatrick JW, Pacheco V. 1998. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. J. Biogeogr. 25(3):593–607.; Pimm SL, Rusell GJ, Gittleman JL, Brooks TM. 1995. The future of biodiversity. Science. 269:347–350.; Plummer M. 2012. rjags: Bayesian graphical models using MCMC. R package version 3-7. [Revisada en: Ago 2012]. http://CRAN.Rproject.org/package=rjagsTest; R Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Revisada en: Ago 2012]. http://www.R-project.orgTest/; Rahbek C. 1997. The relationship among area, elevation, and regional species richness in neotropical birds. Am. Nat. 149 (5):875–902.; Reed JM. 1996. Using statistical probability to increase confidence of inferring species extinction. Conserv. Biol. 10:1283–1285.; Scott JM, Csuti B, Jacobi JD, Estes JE.1987. Species richness. Bioscience. 37:782–788.; Scott JM, Davis F, Csuti B, Noss R, Butler B, Groves C, Anderson H, Caicco S, D’erchita F, Edwards TC, Yulliman J, Wright RG. 1993. Gap analysis: a geographical approach to the protection of biological diversity. Wildlife Monogr. 123:1–4.; Sigel BJ, Sherry TW, Young BE. 2006. Avian community response to lowland tropical rainforest isolation: 40 years of change at La Selva Biological Station, Costa Rica. Conserv. Biol. 20(1):111–121. doi:10.1111/j.1523-1739.2006.00293.x; Solow AR. 1993. Inferring extinction from sighting data. Ecology. 74:962–964.; Stiles FG. 1985. Conservation of forest birds in Costa Rica: problems and perspectives. En: Diamond AW, Lovejoy TE, editores. Conservation of tropical forest birds. Cambridge, UK: International council for bird preservation. p. 141–168.; Terborgh, J. 1971. Distribution on elevational gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecology. 52:23–40.; [TEAM] Tropical Ecology Assessment & Monitoring Network). 2011. TEAM Homepage. [Revisada en: Ago 2012]. http://www.teamnetwork.orgTest; Wiens JA. 1992. The Ecology of Bird Communities. Volume 1 (Foundations and Patterns). Cambridge, Great Britain: Cambridge University Press.; Wickham H. 2009. ggplot2: elegant graphics for data analysis. New York: Springer; Young BE, Derosier D, Poweil GVN. 1998. Diversity and conservation of understory birds in the Tilarán mountains, Costa Rica. Auk. 115(4):998–1016.; Yu YS, Yajima M. 2012. R2jags: A Package for Running jags from R. R package version 0.03-08. [Revisada en: Ago 2012]. http://CRAN.Rproject.org/package=R2jagsTest; Zipkin E, Dewan A, Royle A. 2009. Impacts of forest fragmentation on species richness: a hierarchical approach to community modeling. J. Appl. Ecol. 46:815–882. doi:10.1111/j.1365-2664.2009.01664.x.; https://revistas.unal.edu.co/index.php/cal/article/view/60647Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    مورد إلكتروني
  7. 7
    مورد إلكتروني
  8. 8
    مورد إلكتروني

    عناروين إضافية: Comunidades de briófitos terrestres relacionados con factores climáticos y topográficos en un páramo del sur de Ecuador

    المصدر: Caldasia; Vol. 41 Núm. 2 (2019); 370-379; Caldasia; Vol. 41 No. 2 (2019); 370-379; 2357-3759; 0366-5232

    URL: https://revistas.unal.edu.co/index.php/cal/article/view/67869/70651Test
    https://revistas.unal.edu.co/index.php/cal/article/view/67869/72544Test
    https://revistas.unal.edu.co/index.php/cal/article/view/67869/70651Test
    https://revistas.unal.edu.co/index.php/cal/article/view/67869/72544Test
    *ref*/Aguirre N, Ojeda-Luna, Eguiguren P, Aguirre-Mendoza Z, editores. 2015. Cambio climático y Biodiversidad: Estudio de caso de los páramos del Parque Nacional Podocarpus, Ecuador. Loja, Ecuador: Programa de biodiversidad y Servicios Ecosistémicos. Universidad Nacional de Loja.
    *ref*/Ah-Peng C, Chuah-Petiot M, Descamps-Julien B, Bardat J, Stamenoff P, Strasberg D. 2007. Bryophyte diversity and distribution along an altitudinal gradient on a lava flow in La Réunion. Divers. Distrib. 13(5):654–662. doi: https://dx.doi.org/10.1111/j.1472-4642.2007.00393.xTest.
    *ref*/Anderson MJ, Legendre P. 1999. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J. Stat. Comput. Simul. 62(3):271–303. doi: https://dx.doi.org/10.1080/00949659908811936Test.
    *ref*/Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth, UK: PRIMER-E.
    *ref*/Anthelme F, Dangles O. 2012. Plant-plant interactions in tropical alpine environments. Perspect Plant Ecol. Evol. Syst. 14(5):363–372. doi: https://dx.doi.org/10.1016/j.ppees.2012.05.002Test.
    *ref*/Balslev H, Luteyn JL. 1992. Páramo. An Andean ecosystem under human influence. London: Academic Press. Beltrán K, Salgado S, Cuesta F, León-Yánez S, Romoleroux K, Ortiz E, Cárdenas A, Velástegui A. 2009. Distribución espacial, sistemas ecológicos y caracterización florística de los páramos en el Ecuador. Quito, Ecuador: EcoCiencia. Proyecto Páramo Andino y Herbario QCA.
    *ref*/Benavides JC, Duque-M AJ, Duivenvoorden JF, Cleef AM. 2006. Species richness and distribution of understorey bryophytes in different forest types in Colombian Amazonia. J. Bryol. 28(3):182–189. doi: https://dx.doi.org/10.1179/174328206X120040Test.
    *ref*/Benítez A, Prieto M, Aragón G. 2015. Large trees and dense canopies: Key factors for maintaining high epiphytic diversity on trunk bases (bryophytes and lichens) in tropical montane forests. Forestry 88(5):521–527. doi: https://dx.doi.org/10.1093/forestry/cpv022Test.
    *ref*/Bruun HH, Moen J, Virtanen R, Grytnes JA, Oksanen L, Angerbjörn A. 2006. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17(1):37–46. doi: https://dx.doi.org/10.1111/j.1654-1103.2006.tb02421.xTest.
    *ref*/Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J, Hofstede R. 2006. Human impact on the hydrology of the Andean páramos. Earth Sci. Rev. 79(1–2):53–72. doi: https://dx.doi.org/10.1016/j.earscirev.2006.06.002Test.
    *ref*/Castillo-Monroy AP, Benítez Á, Reyes-Bueno F, Donoso DA, Cueva A. 2016. Biocrust structure responds to soil variables along a tropical scrubland elevation gradient. J. Arid. Environ. 124:31–38. doi: https://dx.doi.org/10.1016/j.jaridenv.2015.06.015Test.
    *ref*/Cataño-D E, Uribe-M J, Campos LV. 2014. Diversidad de hepáticas y musgos en turberas del nevado del Tolima, Colombia. Caldasia 36(2):217–229. doi: https://dx.doi.org/10.15446/caldasia.v36n2.47479Test.
    *ref*/Churchill SP. c2019. Andean Bryophytes. [Revisada en: 02 Feb 2019] http://www.tropicos.org/Project/ANBRYTest
    *ref*/Churchill SP, Griffin D. 1999. Mosses. En: Luteyn J, editor. Páramos: A checklists of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden. Volumen 84. New York: The new York Botanical Garden. p. 53–64.
    *ref*/Cogoni A, Brundu G, Zedda L. 2011. Diversity and ecology of terricolous bryophyte and lichen communities in coastal areas of Sardinia (Italy). Nova Hedwigia 92(1–2):159–175. doi: https://dx.doi.org/10.1127/0029-5035/2011/0092-0159Test.
    *ref*/Colwell RK. c2013. EstimateS: statistical estimation of species richness and shared species from samples. [Revisada en: 02 Feb 2019] http://viceroy.colorado.edu/estimates/EstimateSPages/EstimateSRegistration.htmTest
    *ref*/Cuesta F, Muriel P, Llambí LD, Halloy S, Aguirre N, Beck S, Carilla J, Meneses RI, Cuello S, Grau A, Gámez LE, Irázabal J, Jácome J, Jaramillo R, Ramírez L, Samaniego N, Suárez-Duque D, Thompson N, Tupayachi A, Viñas P, Yager K, Becerra MT, Pauli H, Gosling WD. 2017. Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 40(12):1381–1394. doi: https://dx.doi.org/10.1111/ecog.02567Test.
    *ref*/Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67(3):345–366. doi: http://dx.doi.org/10.1890/0012-9615Test(1997)067%5B0345:SAAIST%5D2.0.CO;2.
    *ref*/Eguiguren P, Ojeda-Luna T, Aguirre N. 2015. Parte IV: Línea base para el monitoreo de los impactos del cambio climático. Patrones de diversidad florística a lo largo de la gradiente altitudinal del páramo del Parque Nacional Podocarpus. En: Aguirre N, Ojeda-Luna, Eguiguren P, Aguirre-Mendoza Z, editores. Cambio climático y Biodiversidad: Estudio de caso de los páramos del Parque Nacional Podocarpus, Ecuador. Loja, Ecuador: Programa de biodiversidad y Servicios Ecosistémicos. Universidad Nacional de Loja. p. 145–168.
    *ref*/Eldridge DJ, Tozer ME. 1997. Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid eastern Australia. Bryologist 100(1):28–39. doi: https://dx.doi.org/10.2307/3244384Test.
    *ref*/Erschbamer B, Mallaun M, Unterluggauer P, Abdaladze O, Akhalkatsi M, Nakhutsrishvili G. 2010. Plant diversity along altitudinal gradients in the central alps (South Tyrol, Italy) and in the central greater Caucasus (Kazbegi region, Georgia). Tuexenia 30(1):11–29.
    *ref*/Garcia-Pichel F, Belnap J. 2001. Small-scale environments and distribution of biological soil crusts. En: Belnap J, Lange OL, editores. Biological soil crusts: Structure, function, and management. Berlin: Springer-Verlag. p. 193–201.
    *ref*/Gignac LD. 2001. Bryophytes as indicators of climate change. Bryologist 104(3):410–420. doi: http://dx.doi.org/10.1639/0007-2745Test(2001)104%5B0410:BAIOCC%5D2.0.CO;2.
    *ref*/González Y, Aragón G, Benítez A, Prieto M. 2017. Changes in soil cryptogamic communities in tropical Ecuadorean páramos. Community Ecol. 18(1):11–20. doi: https://dx.doi.org/10.1556/168.2017.18.1.2Test.
    *ref*/Gradstein SR. 1998. Hepatic diversity in the neotropical páramos. Monogr. Syst. Bot. Missouri Bot. Garden 68:69–85.
    *ref*/Gradstein SR. 1999. Hepatics. En: Luteyn JL, editor. Páramos: A checklist of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden. Volumen 84. New York: The New York Botanical Garden. p. 65–73.
    *ref*/Gradstein SR. 2016. The genus Plagiochila (Marchantiophyta) in Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 40(154):104–136. doi: https://dx.doi.org/10.18257/raccefyn.272Test.
    *ref*/Gradstein SR, Benitez A. 2016. Liverworts New to Ecuador with Description of Plagiochila priceana sp. nov. and Syzygiella burghardtii sp. nov. Cryptogamie Bryol. 38(4):335–349. doi: https://dx.doi.org/10.7872/cryb/v38.iss4.2017.335Test.
    *ref*/Gradstein SR, Churchill SP, Salazar-Allen N. 2001. Guide to the bryophytes of tropical America. Memoirs of the New York Botanical Garden. Volumen 87. New York: The New York Botanical Garden.
    *ref*/Hofstede R. 2001. El impacto de las actividades humanas sobre el páramo. En: Mena-Vásconez P, Medina G, Hofstede R, editores. Los páramos del Ecuador. Particularidades, problemas y perspectivas. Quito, Ecuador: Abya Yala, Proyecto Páramo. p. 161–185.
    *ref*/Hofstede R, Segarra P, Mena Vásconez P, editores. 2003. Los páramos del mundo. Proyecto Atlas Mundial de los Páramos. Quito, Ecuador: Global Peatland Initiative, NC-IUCN, EcoCiencia.
    *ref*/Luteyn JL, editor. 1999. Páramos: A checklist of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden. Volumen 84. New York: The New York Botanical Garden.
    *ref*/Mandl NA, Kessler M, Gradstein SR. 2009. Effects of environmental heterogeneity on species diversity and composition of terrestrial bryophyte assemblages in tropical montane forests of southern Ecuador. Pl. Ecol. Divers. 2(3):313–321. doi: https://dx.doi.org/10.1080/17550870903341877Test.
    *ref*/Mandl NA, Lehnert M, Kessler M, Gradstein SR. 2010. A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern Ecuador. Biodivers. Conserv. 19(8):2359–2369. doi: https://dx.doi.org/10.1007/s10531-010-9839-4Test.
    *ref*/Matson EC, Bart DJ. 2014. Plant–community responses to shrub cover in a páramo grassland released from grazing and burning. Austral Ecol. 39(8):918–928. doi: https://doi.org/10.1111/aec.12157Test.
    *ref*/McCune B, Grace J, Urban D. 2002. MRPP (multi-response permutation procedures) in analysis of ecological communities. Oregon, USA: MjM Software Design.
    *ref*/Mena-Vásconez P, Medina G, Hofstede R, editores. 2001. Los páramos del Ecuador: particularidades, problemas y perspectivas. Quito, Ecuador: Abya Yala, Proyecto Páramo.
    *ref*/Nöske NM, Hilt N, Werner FA, Brehm G, Fiedler K, Sipman HJM, Gradstein SR. 2008. Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic Appl. Ecol. 9(1):4–12. doi: https://dx.doi.org/10.1016/j.baae.2007.06.014Test.
    *ref*/Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens H, Wagner H. 2013. Vegan: Community Ecology Package. Vienna, Austria: R Foundation for Statistical Computing.
    *ref*/Pauli H, Gottfried M, Hohenwallner D, Hüber K, Reiter K, Grabherr G. 2004. The GLORIA Field Manual – Multi-Summit Approach. Vienna, Austria: University of Vienna, Department of Vegetation Ecology Conversation Biology, Insitute of Ecology/Conservation Biology.
    *ref*/Pauli H, Gottfried M, Lamprecht A, Niessner S, Rumpf S, Winkle M, Steinbauer K, Grabherr G. 2015. The GLORIA field manual—standard multi-summit approach, supplementary methods and extraapproaches. Vienna, Austria: GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences.
    *ref*/R Core Development Team. c2014. A language and environment for statistical computing. Foundation for Statistical Computing. [Revisada en: 02 Feb 2019]. http://www.R-project.orgTest
    *ref*/Ramsay PM, Oxley ERB. 1996. Fire temperatures and postfire plant community dynamics in Ecuadorian grass páramo. Pl. Ecol. 124(2):129–144.
    *ref*/Sklenár P, Balslev H. 2005. Superpáramo plant species diversity and phytogeography in Ecuador. Flora 200:416–433. doi: https://dx.doi.org/10.1016/j.flora.2004.12.006Test.
    *ref*/Sklenár P, Ramsay PM. 2001. Diversity of zonal páramo plant communities in Ecuador. Divers. Distrib. 7(3):113–124. doi: https://dx.doi.org/10.1046/j.1472-4642.2001.00101.xTest.
    *ref*/Sun SQ, Liu T, Wu YH, Wang GX, Zhu B, DeLuca T, Wang YQ, Luo J. 2017. Ground bryophytes regulate net soil carbon efflux: evidence from two subalpine ecosystems on the east edge of the Tibet Plateau. Plant Soil 417(1–2):363–375. doi: https://dx.doi.org/10.1007/s11104-017-3264-3Test.
    *ref*/Sun SQ, Wu YH, Wang GX, Zhou J, Yu D, Bing HJ, Luo J. 2013. Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain, China. PLoS ONE 8(3):e58131. doi: https://dx.doi.org/10.1371/journal.pone.0058131Test.
    *ref*/Urgiles-Gómez N, Santin J, Cevallos P, Aguirre N. 2015. Diversidad de briófitos de los Páramos de Cajanuma del Parque Nacional Podocarpus. En: Aguirre N, Ojeda-Luna, Eguiguren P, Aguirre-Mendoza Z, editores. Cambio climático y Biodiversidad: Estudio de caso de los páramos del Parque Nacional Podocarpus, Ecuador. Loja, Ecuador: Programa de biodiversidad y Servicios Ecosistémicos. Universidad Nacional de Loja. p. 188–211.
    *ref*/Vanneste T, Michelsen O, Graae BJ, Kyrkjeeide MO, Holien H, Hassel K, Lindmo S, Erzsebet Kapás R, De Frenne P. 2017. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32(4):579–593. doi: https://dx.doi.org/10.1007/s11284-017-1472-1Test.
    *ref*/Vittoz P, Camenisch M, Mayor R, Miserere L, Vust M, Theurillat JP. 2010. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120(2):139–149. doi: https://dx.doi.org/10.1007/s00035-010-0079-8Test.

  9. 9
    مورد إلكتروني

    عناروين إضافية: Comunidades de briófitos terrestres relacionados con factores climáticos y topográficos en un páramo del sur de Ecuador

    المصدر: Caldasia; Vol. 41 Núm. 2 (2019); 370-379; Caldasia; Vol. 41 No. 2 (2019); 370-379; 2357-3759; 0366-5232

    URL: https://revistas.unal.edu.co/index.php/cal/article/view/67869/70651Test
    https://revistas.unal.edu.co/index.php/cal/article/view/67869/72544Test
    https://revistas.unal.edu.co/index.php/cal/article/view/67869/70651Test
    https://revistas.unal.edu.co/index.php/cal/article/view/67869/72544Test
    *ref*/Aguirre N, Ojeda-Luna, Eguiguren P, Aguirre-Mendoza Z, editores. 2015. Cambio climático y Biodiversidad: Estudio de caso de los páramos del Parque Nacional Podocarpus, Ecuador. Loja, Ecuador: Programa de biodiversidad y Servicios Ecosistémicos. Universidad Nacional de Loja.
    *ref*/Ah-Peng C, Chuah-Petiot M, Descamps-Julien B, Bardat J, Stamenoff P, Strasberg D. 2007. Bryophyte diversity and distribution along an altitudinal gradient on a lava flow in La Réunion. Divers. Distrib. 13(5):654–662. doi: https://dx.doi.org/10.1111/j.1472-4642.2007.00393.xTest.
    *ref*/Anderson MJ, Legendre P. 1999. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J. Stat. Comput. Simul. 62(3):271–303. doi: https://dx.doi.org/10.1080/00949659908811936Test.
    *ref*/Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth, UK: PRIMER-E.
    *ref*/Anthelme F, Dangles O. 2012. Plant-plant interactions in tropical alpine environments. Perspect Plant Ecol. Evol. Syst. 14(5):363–372. doi: https://dx.doi.org/10.1016/j.ppees.2012.05.002Test.
    *ref*/Balslev H, Luteyn JL. 1992. Páramo. An Andean ecosystem under human influence. London: Academic Press. Beltrán K, Salgado S, Cuesta F, León-Yánez S, Romoleroux K, Ortiz E, Cárdenas A, Velástegui A. 2009. Distribución espacial, sistemas ecológicos y caracterización florística de los páramos en el Ecuador. Quito, Ecuador: EcoCiencia. Proyecto Páramo Andino y Herbario QCA.
    *ref*/Benavides JC, Duque-M AJ, Duivenvoorden JF, Cleef AM. 2006. Species richness and distribution of understorey bryophytes in different forest types in Colombian Amazonia. J. Bryol. 28(3):182–189. doi: https://dx.doi.org/10.1179/174328206X120040Test.
    *ref*/Benítez A, Prieto M, Aragón G. 2015. Large trees and dense canopies: Key factors for maintaining high epiphytic diversity on trunk bases (bryophytes and lichens) in tropical montane forests. Forestry 88(5):521–527. doi: https://dx.doi.org/10.1093/forestry/cpv022Test.
    *ref*/Bruun HH, Moen J, Virtanen R, Grytnes JA, Oksanen L, Angerbjörn A. 2006. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17(1):37–46. doi: https://dx.doi.org/10.1111/j.1654-1103.2006.tb02421.xTest.
    *ref*/Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J, Hofstede R. 2006. Human impact on the hydrology of the Andean páramos. Earth Sci. Rev. 79(1–2):53–72. doi: https://dx.doi.org/10.1016/j.earscirev.2006.06.002Test.
    *ref*/Castillo-Monroy AP, Benítez Á, Reyes-Bueno F, Donoso DA, Cueva A. 2016. Biocrust structure responds to soil variables along a tropical scrubland elevation gradient. J. Arid. Environ. 124:31–38. doi: https://dx.doi.org/10.1016/j.jaridenv.2015.06.015Test.
    *ref*/Cataño-D E, Uribe-M J, Campos LV. 2014. Diversidad de hepáticas y musgos en turberas del nevado del Tolima, Colombia. Caldasia 36(2):217–229. doi: https://dx.doi.org/10.15446/caldasia.v36n2.47479Test.
    *ref*/Churchill SP. c2019. Andean Bryophytes. [Revisada en: 02 Feb 2019] http://www.tropicos.org/Project/ANBRYTest
    *ref*/Churchill SP, Griffin D. 1999. Mosses. En: Luteyn J, editor. Páramos: A checklists of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden. Volumen 84. New York: The new York Botanical Garden. p. 53–64.
    *ref*/Cogoni A, Brundu G, Zedda L. 2011. Diversity and ecology of terricolous bryophyte and lichen communities in coastal areas of Sardinia (Italy). Nova Hedwigia 92(1–2):159–175. doi: https://dx.doi.org/10.1127/0029-5035/2011/0092-0159Test.
    *ref*/Colwell RK. c2013. EstimateS: statistical estimation of species richness and shared species from samples. [Revisada en: 02 Feb 2019] http://viceroy.colorado.edu/estimates/EstimateSPages/EstimateSRegistration.htmTest
    *ref*/Cuesta F, Muriel P, Llambí LD, Halloy S, Aguirre N, Beck S, Carilla J, Meneses RI, Cuello S, Grau A, Gámez LE, Irázabal J, Jácome J, Jaramillo R, Ramírez L, Samaniego N, Suárez-Duque D, Thompson N, Tupayachi A, Viñas P, Yager K, Becerra MT, Pauli H, Gosling WD. 2017. Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 40(12):1381–1394. doi: https://dx.doi.org/10.1111/ecog.02567Test.
    *ref*/Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67(3):345–366. doi: http://dx.doi.org/10.1890/0012-9615Test(1997)067%5B0345:SAAIST%5D2.0.CO;2.
    *ref*/Eguiguren P, Ojeda-Luna T, Aguirre N. 2015. Parte IV: Línea base para el monitoreo de los impactos del cambio climático. Patrones de diversidad florística a lo largo de la gradiente altitudinal del páramo del Parque Nacional Podocarpus. En: Aguirre N, Ojeda-Luna, Eguiguren P, Aguirre-Mendoza Z, editores. Cambio climático y Biodiversidad: Estudio de caso de los páramos del Parque Nacional Podocarpus, Ecuador. Loja, Ecuador: Programa de biodiversidad y Servicios Ecosistémicos. Universidad Nacional de Loja. p. 145–168.
    *ref*/Eldridge DJ, Tozer ME. 1997. Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid eastern Australia. Bryologist 100(1):28–39. doi: https://dx.doi.org/10.2307/3244384Test.
    *ref*/Erschbamer B, Mallaun M, Unterluggauer P, Abdaladze O, Akhalkatsi M, Nakhutsrishvili G. 2010. Plant diversity along altitudinal gradients in the central alps (South Tyrol, Italy) and in the central greater Caucasus (Kazbegi region, Georgia). Tuexenia 30(1):11–29.
    *ref*/Garcia-Pichel F, Belnap J. 2001. Small-scale environments and distribution of biological soil crusts. En: Belnap J, Lange OL, editores. Biological soil crusts: Structure, function, and management. Berlin: Springer-Verlag. p. 193–201.
    *ref*/Gignac LD. 2001. Bryophytes as indicators of climate change. Bryologist 104(3):410–420. doi: http://dx.doi.org/10.1639/0007-2745Test(2001)104%5B0410:BAIOCC%5D2.0.CO;2.
    *ref*/González Y, Aragón G, Benítez A, Prieto M. 2017. Changes in soil cryptogamic communities in tropical Ecuadorean páramos. Community Ecol. 18(1):11–20. doi: https://dx.doi.org/10.1556/168.2017.18.1.2Test.
    *ref*/Gradstein SR. 1998. Hepatic diversity in the neotropical páramos. Monogr. Syst. Bot. Missouri Bot. Garden 68:69–85.
    *ref*/Gradstein SR. 1999. Hepatics. En: Luteyn JL, editor. Páramos: A checklist of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden. Volumen 84. New York: The New York Botanical Garden. p. 65–73.
    *ref*/Gradstein SR. 2016. The genus Plagiochila (Marchantiophyta) in Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 40(154):104–136. doi: https://dx.doi.org/10.18257/raccefyn.272Test.
    *ref*/Gradstein SR, Benitez A. 2016. Liverworts New to Ecuador with Description of Plagiochila priceana sp. nov. and Syzygiella burghardtii sp. nov. Cryptogamie Bryol. 38(4):335–349. doi: https://dx.doi.org/10.7872/cryb/v38.iss4.2017.335Test.
    *ref*/Gradstein SR, Churchill SP, Salazar-Allen N. 2001. Guide to the bryophytes of tropical America. Memoirs of the New York Botanical Garden. Volumen 87. New York: The New York Botanical Garden.
    *ref*/Hofstede R. 2001. El impacto de las actividades humanas sobre el páramo. En: Mena-Vásconez P, Medina G, Hofstede R, editores. Los páramos del Ecuador. Particularidades, problemas y perspectivas. Quito, Ecuador: Abya Yala, Proyecto Páramo. p. 161–185.
    *ref*/Hofstede R, Segarra P, Mena Vásconez P, editores. 2003. Los páramos del mundo. Proyecto Atlas Mundial de los Páramos. Quito, Ecuador: Global Peatland Initiative, NC-IUCN, EcoCiencia.
    *ref*/Luteyn JL, editor. 1999. Páramos: A checklist of plant diversity, geographical distribution, and botanical literature. Memoirs of the New York Botanical Garden. Volumen 84. New York: The New York Botanical Garden.
    *ref*/Mandl NA, Kessler M, Gradstein SR. 2009. Effects of environmental heterogeneity on species diversity and composition of terrestrial bryophyte assemblages in tropical montane forests of southern Ecuador. Pl. Ecol. Divers. 2(3):313–321. doi: https://dx.doi.org/10.1080/17550870903341877Test.
    *ref*/Mandl NA, Lehnert M, Kessler M, Gradstein SR. 2010. A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern Ecuador. Biodivers. Conserv. 19(8):2359–2369. doi: https://dx.doi.org/10.1007/s10531-010-9839-4Test.
    *ref*/Matson EC, Bart DJ. 2014. Plant–community responses to shrub cover in a páramo grassland released from grazing and burning. Austral Ecol. 39(8):918–928. doi: https://doi.org/10.1111/aec.12157Test.
    *ref*/McCune B, Grace J, Urban D. 2002. MRPP (multi-response permutation procedures) in analysis of ecological communities. Oregon, USA: MjM Software Design.
    *ref*/Mena-Vásconez P, Medina G, Hofstede R, editores. 2001. Los páramos del Ecuador: particularidades, problemas y perspectivas. Quito, Ecuador: Abya Yala, Proyecto Páramo.
    *ref*/Nöske NM, Hilt N, Werner FA, Brehm G, Fiedler K, Sipman HJM, Gradstein SR. 2008. Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic Appl. Ecol. 9(1):4–12. doi: https://dx.doi.org/10.1016/j.baae.2007.06.014Test.
    *ref*/Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens H, Wagner H. 2013. Vegan: Community Ecology Package. Vienna, Austria: R Foundation for Statistical Computing.
    *ref*/Pauli H, Gottfried M, Hohenwallner D, Hüber K, Reiter K, Grabherr G. 2004. The GLORIA Field Manual – Multi-Summit Approach. Vienna, Austria: University of Vienna, Department of Vegetation Ecology Conversation Biology, Insitute of Ecology/Conservation Biology.
    *ref*/Pauli H, Gottfried M, Lamprecht A, Niessner S, Rumpf S, Winkle M, Steinbauer K, Grabherr G. 2015. The GLORIA field manual—standard multi-summit approach, supplementary methods and extraapproaches. Vienna, Austria: GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences.
    *ref*/R Core Development Team. c2014. A language and environment for statistical computing. Foundation for Statistical Computing. [Revisada en: 02 Feb 2019]. http://www.R-project.orgTest
    *ref*/Ramsay PM, Oxley ERB. 1996. Fire temperatures and postfire plant community dynamics in Ecuadorian grass páramo. Pl. Ecol. 124(2):129–144.
    *ref*/Sklenár P, Balslev H. 2005. Superpáramo plant species diversity and phytogeography in Ecuador. Flora 200:416–433. doi: https://dx.doi.org/10.1016/j.flora.2004.12.006Test.
    *ref*/Sklenár P, Ramsay PM. 2001. Diversity of zonal páramo plant communities in Ecuador. Divers. Distrib. 7(3):113–124. doi: https://dx.doi.org/10.1046/j.1472-4642.2001.00101.xTest.
    *ref*/Sun SQ, Liu T, Wu YH, Wang GX, Zhu B, DeLuca T, Wang YQ, Luo J. 2017. Ground bryophytes regulate net soil carbon efflux: evidence from two subalpine ecosystems on the east edge of the Tibet Plateau. Plant Soil 417(1–2):363–375. doi: https://dx.doi.org/10.1007/s11104-017-3264-3Test.
    *ref*/Sun SQ, Wu YH, Wang GX, Zhou J, Yu D, Bing HJ, Luo J. 2013. Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain, China. PLoS ONE 8(3):e58131. doi: https://dx.doi.org/10.1371/journal.pone.0058131Test.
    *ref*/Urgiles-Gómez N, Santin J, Cevallos P, Aguirre N. 2015. Diversidad de briófitos de los Páramos de Cajanuma del Parque Nacional Podocarpus. En: Aguirre N, Ojeda-Luna, Eguiguren P, Aguirre-Mendoza Z, editores. Cambio climático y Biodiversidad: Estudio de caso de los páramos del Parque Nacional Podocarpus, Ecuador. Loja, Ecuador: Programa de biodiversidad y Servicios Ecosistémicos. Universidad Nacional de Loja. p. 188–211.
    *ref*/Vanneste T, Michelsen O, Graae BJ, Kyrkjeeide MO, Holien H, Hassel K, Lindmo S, Erzsebet Kapás R, De Frenne P. 2017. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32(4):579–593. doi: https://dx.doi.org/10.1007/s11284-017-1472-1Test.
    *ref*/Vittoz P, Camenisch M, Mayor R, Miserere L, Vust M, Theurillat JP. 2010. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120(2):139–149. doi: https://dx.doi.org/10.1007/s00035-010-0079-8Test.

  10. 10
    مورد إلكتروني