رسالة جامعية

Evaluación del cianuro total de hojas de yuca (Manihot esculenta) y propuesta de métodos de eliminación en diferentes variedades de Colombia 2023 ; Evaluation of total cyanide in cassava (Manihot esculenta) leaves and proposal of elimination methods in different Colombian varieties 2023

التفاصيل البيبلوغرافية
العنوان: Evaluación del cianuro total de hojas de yuca (Manihot esculenta) y propuesta de métodos de eliminación en diferentes variedades de Colombia 2023 ; Evaluation of total cyanide in cassava (Manihot esculenta) leaves and proposal of elimination methods in different Colombian varieties 2023
المؤلفون: Mahecha Rojas, Iván Mauricio
المساهمون: López Carrascal, Camilo Ernesto, Soto Sedano, Johana Carolina, Chaves Silva, Diana Carolina, Toxicología Analítica, Manihot Biotec, orcid:0000-0002-9722-7556, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001806225Test, https://www.researchgate.net/profile/Ivan-Mahecha-RojasTest, https://scholar.google.com/citations?user=dtaaKU4AAAAJ&hl=esTest
بيانات النشر: Universidad Nacional de Colombia
Bogotá - Medicina - Maestría en Toxicología
Facultad de Medicina
Bogotá, Colombia
Universidad Nacional de Colombia - Sede Bogotá
سنة النشر: 2023
مصطلحات موضوعية: 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales, Plantas tóxicas, Ensayos de toxicidad, Desintoxicación, poisonous plants, toxicity tests, detoxification, Ácido cianhídrico, Eliminación, Espectrofotometría UV-VIS, Hojas de yuca, Linamarina, Toxicidad, Manihot esculenta, Cassava leaves, Elimination, Hydrocyanic acid, Linamarin, Spectrophotometry UV-VIS, Toxicity
جغرافية الموضوع: Colombia, http://vocab.getty.edu/page/tgn/1000050Test
الوقت: 2023
الوصف: ilustraciones, diagramas, fotografías ; La linamarina es un glucósido cianogénico presente en la yuca (Manihot esculenta C) cuya descomposición mediante reacciones de hidrólisis enzimática libera ácido cianhídrico como mecanismo de defensa de la planta. Se sabe que el consumo de las raíces tuberosas de la yuca en Colombia es abundante, así como su producción y versatilidad en cuanto a su cultivo. Sin embargo, a nivel nutricional este alimento solo aporta en su mayoría carbohidratos a diferencia de las hojas que tienen un gran aporte en proteínas y minerales, pero su contenido en linamarina es considerablemente mayor que el presente en las raíces. En el marco de esta investigación, se llevó a cabo un análisis experimental mediante una metodología netamente descriptiva con el objetivo de investigar la concentración de ácido cianhídrico (HCN) en las hojas de yuca de diversas variedades. Se emplearon técnicas de análisis colorimétrico y espectrofotométrico (UV-VIS), adaptando y optimizando metodologías estandarizadas para la identificación y cuantificación de HCN donde se observaron valores en un rango comprendido entre 97 a 3936 mg HCN/kg de muestra seca (ppm). Adicionalmente, este estudio consideró la eliminación del HCN en la hoja con el propósito de fomentar y añadir valor a nivel agroalimentario a este importante material, por lo que se propusieron y efectuaron dos métodos capaces de ser reproducibles a nivel doméstico evidenciando una remoción del contenido de HCN entre el 60 y el 91% de las hojas. (Texto tomado de la fuente). ; Linamarin is a cyanogenic glycoside present in cassava (Manihot esculenta C), whose enzymatic hydrolysis releases hydrogen cyanide as a defense mechanism in the plant. It is well-established that cassava tuber consumption is prevalent in Colombia due to its abundant production and versatility in cultivation. However, nutritionally, this food primarily contributes carbohydrates, in contrast to the leaves which offer substantial protein and mineral content. Notably, the linamarin content ...
نوع الوثيقة: master thesis
وصف الملف: xviii, 113 páginas; application/pdf
اللغة: Spanish; Castilian
العلاقة: Aguilar, E., Rodríguez, A., Saborío, D., Morales, J., Chacón, M., Rodríguez, L., Acuña, P., Torres, S., & Gómez, Y. (2017). Manual del cultivo de Yuca. http://www.mag.go.cr/bibliotecavirtual/F01-10918.pdfTest; Anjani, N., Hamzah, B., & Abram, H. (2021). Analysis of Cyanide Contents in Cassava Leaves (Manihot esculenta Crantz) Based on Boiling Time with Formation of Hydrindantin Complex by Using UV-Vis Spectrophotometry. Jurnal Akademika Kimia, 10(1), 49–52. https://doi.org/10.22487/J24775185.2021.V10.I1.PP49-52Test; Appenteng, K., Krueger, R., Johnson, C., Ingold, H., Bell, R., Thomas, L., & Greenlief, C. (2021). Cyanogenic Glycoside Analysis in American Elderberry. Molecules 2021, Vol. 26, Page 1384, 26(5), 1384. https://doi.org/10.3390/MOLECULES26051384Test; Arias, J., Ramos, L., Acosta, L., Camacho, H., & Marín, Z. (2005). Diversidad de yucas (Manihot esculenta Crantz) entre los Ticuna: Riqueza cultural y genética de un producto tradicional.; Aristizábal, J., & Sánchez, T. (2007). Guía técnica para producción y análisis de almidón de yuca. Boletín de servicios agrícolas de la FAO - 163, 153. https://doi.org/10.4060/CC2323ENTest; Arrázola, G. (2002). Análisis de glucósidos cianogénicos en variedades de almendro : implicaciones en la mejora genética Tesis Doctoral [Universidad de Alicante]. En Universidad de Alicante. http://hdl.handle.net/10045/3219Test; Arrázola, G., Grané, N., Martin, M. L., & Dicenta, F. (2013). Determinación de los compuestos cianogénicos amigdalina y prunasina en semillas de almendras mediante cromatografía líquida de alta resolución. Química Aplicada y Analítica Rev. Colomb. Quim, 42(1), 23–30.; Arrázola, G., Sánchez, R., Dicenta, F., & Grané, N. (2012). Art Content of the cyanogenic glucoside amygdalin in almondRG. Agronomía Colombiana, 30, 6. https://www.researchgate.net/publication/333982839Test; Baird, B., Eaton, D., & Rice, W. (2017). Standard Methods for the examination of water and wastewater. En American Public Health Association (23a ed.).; Belcher, R. (1969). Gilbert H. , Quantitative Chemical Analysis, 2nd Edn. Analytica Chimica Acta, 45(1). https://doi.org/10.1016/s0003-2670Test(00)89411-8; Bjarnholt, N., & Møller, B. (2008). Hydroxynitrile glucosides. En Phytochemistry (Vol. 69, Número 10, pp. 1947–1961). Pergamon. https://doi.org/10.1016/j.phytochem.2008.04.018Test; Bradbury, J., Bradbury, G., & Egan, V. (1994). Comparison Of Methods Of Analysis Of Cyanogens in Cassava. Acta Horticulturae, 375, 87–96. https://doi.org/10.17660/ACTAHORTIC.1994.375.6Test; Bradbury, J. , & Denton, C. (2014). Mild method for removal of cyanogens from cassava leaves with retention of vitamins and protein. Food Chemistry, 158, 417–420. https://doi.org/10.1016/J.FOODCHEM.2014.02.132Test; Brimer, L., Abrahamsson, M., Mlingi, N., & Rosling, H. (1998). A modified microdiffusion assay with solid-state detection for the determination of total cyanogens (CNp) in cassava flour. Comparison to the method of O’Brien et al. (1991). Food Chemistry, 62(2), 239–242. https://doi.org/10.1016/S0308-8146Test(97)00152-0; Bromer, W., Egge, H., Eiter, K., Eyjólfsson, R., Gross, D., Hikino, H., Hikino, Y., Jackson, B. G., Morin, R. B., Pike, J. E., Warnhoff, E. W., Wiegandt, H., & Wong, E. (1970). Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products (W. Herz, H. Grisebach, & A. I. Scott, Eds.; Vol. 28). Springer Vienna. https://doi.org/10.1007/978-3-7091-7123-3Test; Casanto, E. (2001). Variedades de la Yuca Entre los Ashánincas (M. Pinto, Ed.; Vol. 1). Universidad Nacional Mayor de San Marcos.; Ceballos, H., & Ospina, B. (2003). La yuca en el Tercer Milenio. En CIAT: CLAYUCA: Ministerio de Agricultura y Desarrollo Rural, FENAVI (Primera Edición). Centro Internacional de Agricultura Tropical.; Chaiareekitwat, S., Latif, S., Mahayothee, B., Khuwijitjaru, P., Nagle, M., Amawan, S., & Müller, J. (2022). Protein composition, chlorophyll, carotenoids, and cyanide content of cassava leaves (Manihot esculenta Crantz) as influenced by cultivar, plant age, and leaf position. Food Chemistry, 372, 131173. https://doi.org/10.1016/J.FOODCHEM.2021.131173Test; Chaouali, N., Gana, I., Dorra, A., Khelifi, F., Nouioui, A., Masri, W., Belwaer, I., Ghorbel, H., & Hedhili, A. (2013). Potential Toxic Levels of Cyanide in Almonds (Prunus amygdalus), Apricot Kernels (Prunus armeniaca), and Almond Syrup. 2013. https://doi.org/10.1155/2013/610648Test; Codex Alimentarius. (1995). General Standard for Contaminants and Toxins in Food And Feed CXS 193-1995. Food and Agriculture Organization of the United Nations.; Conn, E. (1980). Cyanogenic Compounds. En Ann. Rev. Plant Physiol (Vol. 31). www.annualreviews.org; Conn, E., Knowles, J., Ingvorsen, K., Godtfredsen, E., Tsuchiya, T., Wyatt .M Linton, A., Halkier, A., Scheller, V., Moller, L., Poulton, E., Manning, K., Hughes, A., Sharif, L., Dunn, A., Oxtoby, E., Nahrstedt, A., Jones, A., Brimer, L., Westley, J., … Lieberei, R. (1988a). Ciba Foundation Symposium 140 - Cyanide Compounds in Biology (D. Evered & S. Harnett, Eds.). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470513712Test; Cooke, R. (1978). An enzymatic assay for the total cyanide content of cassava (manihot esculenta crantz). Journal of the Science of Food and Agriculture, 29(4). https://doi.org/10.1002/jsfa.2740290408Test; Cooke, R. (1979). Enzymatic assay for determining the cyanide content of cassava and cassava products. CIAT’S; Cornara, L., Xiao, J., & Burlando, B. (2016). Therapeutic Potential of Temperate Forage Legumes: A Review. Critical reviews in food science and nutrition, 56 Suppl 1, S149–S161. https://doi.org/10.1080/10408398.2015.1038378Test; Da Ponte, J. (2006). Cartilha da manipueira: uso do composto como insumo agrícola (Tercera Edición). Banco do Nordeste do Brasil.; del Cueto, J., Møller, L., Dicenta, F., & Sánchez-Pérez, R. (2018). β-Glucosidase activity in almond seeds. Plant Physiology and Biochemistry, 126, 163–172. https://doi.org/10.1016/j.plaphy.2017.12.028Test; Deng, P., Cui, B., Zhu, H., Phommakoun, B., Zhang, D., Li, Y., Zhao, F., & Zhao, Z. (2021). Accumulation Pattern of Amygdalin and Prunasin and Its Correlation with Fruit and Kernel Agronomic Characteristics during Apricot (Prunus armeniaca L.) Kernel Development. Foods 2021, Vol. 10, Page 397, 10(2), 397. https://doi.org/10.3390/FOODS10020397Test; Díaz, P., & López, C. (2021). Yuca: Pan y Carne, Una Alternativa Potencial para Hacer Frente al Hambre Oculta. Acta Biológica Colombiana, 26(2), 235–246. https://doi.org/10.15446/abc.v26n2.84569Test; Dunstan, W. R., Henry, T. A., & Auld, S. J. M. (1906). Cyanogenesis in Plants. Part IV.--The Occurrence of Phaseolunatin in Common Flax (Linum usitatissimum). Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 78(523), 145– 152. http://www.jstor.org/stable/80155Test; Dzombak, A., Ghosh, S., & Wong, M. (2005). Cyanide in Water and Soil. Eds.; Primera Edición. CRC Press. https://doi.org/10.1201/9781420032079Test; Eksittikul, T., & Chulavatnatol, M. (1988). Characterization of cyanogenic β-glucosidase (Linamarase) from cassava (Manihot esculenta Crantz). Archives of Biochemistry and Biophysics, 266(1). https://doi.org/10.1016/0003-9861Test(88)90257-3; Essers, A., Bosveld, M., Van Grift, D., & Voragen, J. (1993). Studies on the quantification of specific cyanogens in cassava products and introduction of a new chromogen. Journal of the Science of Food and Agriculture, 63(3). https://doi.org/10.1002/jsfa.2740630305Test; Ganjewala, D., Kumar, S., Devi, A., & Ambika, K. (2010). Advances in cyanogenic glycosides biosynthesis and analyses in plants: A review. Szegediensis, Acta Biologica, 54(1), 1–14. http://www.sci.u-szeged.hu/ABSTest; Gleadow, M., Bjarnholt, N., Jorgensen, K., Fox, J., & Miller, R. (2011). Cyanogenic glycosides (pp. 283–310). Stadium Press LLC. https://www.researchgate.net/publication/223138629_CYANOGENIC_GLYCOSIDESTest; Gleadow, M., & Møller, L. (2014). Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annual review of plant biology, 65, 155–185. https://doi.org/10.1146/ANNUREVARPLANT-050213-040027Test; Gliorio, G. (2020). Metodo di Liebig-Denigés: Argentometria %7C “Ripetiamo Insieme: ACF1, #9.1”. https://www.youtube.com/watch?v=-Mcwt97X3NI&list=LL&index=7&t=185sTest; Gómez, G., & Valdivieso, M. (1985). Cassava foliage: Chemical composition, cyanide content and effect of drying on cyanide elimination. Journal of the Science of Food and Agriculture, 36(6), 433–441. https://doi.org/10.1002/JSFA.2740360602Test; Gomez, A., Berkoff, C., Gill, K., Iavarone, T., Lieberman, E., Ma, M., Schultink, A., Karavolias, G., Wyman, K., Chauhan, D., Taylor, J., Staskawicz, J., Cho, J., Rokhsar, S., & Lyons, B. (2022). CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production. Frontiers in Plant Science, 13, 079254. https://doi.org/10.3389/FPLS.2022.1079254/BIBTEXTest; Gundersen, E., Christiansen, C., Jørgensen, K., & Lübeck, M. (2022). Production of leaf protein concentrates from cassava: Protein distribution and anti-nutritional factors in biorefining fractions. Journal of Cleaner Production, 379, 134730. https://doi.org/10.1016/J.JCLEPRO.2022.134730Test; Halter, G., Chen, D., Hild, N., Mora, A., Stoessel, R., Koehler, M., Grass, N., & Stark, J. (2013). Induced cyanogenesis from hydroxynitrile lyase and mandelonitrile on wheat with polylactic acid multilayer-coating produces self-defending seeds. Journal of Materials Chemistry A, 2(3), 853–858. https://doi.org/10.1039/C3TA14249CTest; Harenčár, Ľ., Ražná, K., & Nôžková, J. (2021). Cyanogenic Glycosides - Their Role and Potential in Plant Food Resources. Journal of microbiology, biotechnology and food sciences, 11(3), e4771–e4771. https://doi.org/10.15414/JMBFS.4771Test; Hawashi, M., Sitania, C., Caesy, C., Aparamarta, W., Widjaja, T., & Gunawan, S. (2019). Kinetic data of extraction of cyanide during the soaking process of cassava leaves. Data in Brief, 25,104279. https://doi.org/10.1016/J.DIB.2019.104279Test; Hillocks, J., & Thresh, M. (2002). Cassava: biology, production and utilization. Wallingford (United Kingdom) CABI. https://doi.org/10.3/JQUERY-UI.JSTest; Hinostroza, F., Mendoza, M., Navarrete, M., & Muñoz, X. (2014). Cultivo de yuca en el Ecuador (436). Portoviejo, EC: INIAP, Estación Experimental Portoviejo, Programa Horticultura-Yuca, 2014. http://repositorio.iniap.gob.ec/handle/41000/5214Test; Hue, K., Van, D. T., Ledin, I., Wredle, E., & Spörndly, E. (2012). Effect of Harvesting Frequency, Variety and Leaf Maturity on Nutrient Composition, Hydrogen Cyanide Content and Cassava Foliage Yield. Asian-Australasian Journal of Animal Sciences, 25(12), 1691–1700. https://doi.org/10.5713/AJAS.2012.12052Test; ICSC 0492 - Cianuro De Hidrógeno, Licuado. (s/f). Recuperado el 18 de noviembre de 2022, de https://www.ilo.org/dyn/icsc/showcard.display?p_lang=es&p_card_id=0492&p_version=2Test; Ikediobi, O., Onyia, G., & Eluwah, E. (1980). A Rapid and Inexpensive Enzymatic Assay for Total Cyanide in Cassava (Manihot esculenta Crantz) and Cassava Products. Agricultural and Biological Chemistry, 44(12). https://doi.org/10.1271/bbb1961.44.2803Test; Jansen Van Rijssen, W., Morris, J., & Eloff, N. (2013). Food safety: Importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz). Journal of Agricultural and Food Chemistry, 61(35), 8333–8339. https://doi.org/10.1021/JF401153X/ASSET/IMAGES/LARGE/JF-2013-01153X_0002.JPEGTest; Juma, S., Mukami, A., Mweu, C., Ngugi, P., & Mbinda, W. (2022). Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava. Frontiers in Plant Science, 13, 1009860. https://doi.org/10.3389/FPLS.2022.1009860/BIBTEXTest; KEGG DOSA Os04t0474900-01. (s/f). Recuperado el 6 de septiembre de 2023, de https://www.genome.jp/dbget-bin/get_linkdb?-t+compound+dosa:Os04t0474900-01Test; Kongsawadworakul, P., Viboonjun, U., Romruensukharom, P., Chantuma, P., Ruderman, S., & Chrestin, H. (2009). The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield. Phytochemistry, 70(6), 730–739. https://doi.org/10.1016/J.PHYTOCHEM.2009.03.020Test; Kotopka, J., & Smolke, C. D. (2019). Production of the cyanogenic glycoside dhurrin in yeast. Metabolic Engineering Communications, 9, e00092. https://doi.org/10.1016/J.MEC.2019.E00092Test; Latif, S., & Müller, J. (2015). Potential of cassava leaves in human nutrition: A review. Trends in Food Science & Technology, 44(2), 147–158. https://doi.org/10.1016/J.TIFS.2015.04.006Test; Latif, S., Zimmermann, S., Barati, Z., & Müller, J. (2019). Detoxification of Cassava Leaves by Thermal, Sodium Bicarbonate, Enzymatic, and Ultrasonic Treatments. Journal of Food Science, 84(7), 1986–1991. https://doi.org/10.1111/1750-3841.14658Test; Lebot, V. (2008). Tropical root and tuber crops: Cassava, sweet potato, yams, aroids. En Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams, Aroids. https://doi.org/10.1079/9781845934248.0000Test; Llorens, J. (2004). Enfermedades neurológicas asociadas al consumo de variedades de mandioca con alto contenido en gluconitrilos. Endocrinología y Nutrición, 51(7), 418–425. https://doi.org/10.1016/S1575-0922Test(04)74638-0; Mahecha, I., & Gavilán, C. (2021). Evaluación de hidrólisis enzimática en la semilla del durazno (Prunus Persica) para la producción de ácido cianhídrico y benzaldehído [Fundación Universidad de América]. https://repository.uamerica.edu.co/handle/20.500.11839/8658Test; Marcía, J., Gil, Á., Varela, F., Henríquez, M., Sosa, L., Pérez, S. F., & Ruíz, S. J. (2022). Cassava detoxification and ereba preparation: contribution to strengthening the food security and sovereignty of the Garífuna people in Honduras. Bionatura, 7(3). https://doi.org/10.21931/RB/2022.07.03.14Test; Mcmahon, J., Sayre, R., & Zidenga, T. (2022). Cyanogenesis in cassava and its molecular manipulation for crop improvement. Journal of Experimental Botany, 73(7), 1853–1867. https://doi.org/10.1093/jxb/erab545Test; Milena, S., Gutiérrez, D., Aragón, G., Escobar, A., Ortiz, D., Sánchez, T., Imbachí, P., & Pachón, H. (2011). Evaluación De La Composición Nutricional, Antinutricional y Biodisponibilidad in Vitro de Diferentes Extractos Foliares. Revista chilena de nutrición, 38(2), 168–176. https://doi.org/10.4067/S0717-75182011000200007Test; Minagricultura. (2021). Cadena Productiva de la Yuca. https://sioc.minagricultura.gov.co/Yuca/Documentos/2021-03Test- 31%20Cifras%20Sectoriales%20yuca.pdf; Montagnac, J., Davis, C. , & Tanumihardjo, S. (2009). Processing techniques to reduce toxicity and antinutrients of Cassava for use as a staple food. Comprehensive Reviews in Food Science and Food Safety, 8(1). https://doi.org/10.1111/j.1541-4337.2008.00064.xTest; Moo, J., Azorín, P., Ramírez, N., & Moreno, P. (2020). State of the production and consumption of pesticides in Mexico %7C Estado de la producción y consumo de plaguicidas en México. Tropical and Subtropical Agroecosystems, 23(2), 1DUMMUY; Morant, V., Jørgensen, K., Jørgensen, C., Paquette, M., Sánchez, R., Møller, L., & Bak, S. (2008). β-Glucosidases as detonators of plant chemical defense. En Phytochemistry (Vol. 69, Número 9, pp. 1795–1813). Phytochemistry. https://doi.org/10.1016/j.phytochem.2008.03.006Test; Nyirenda, K. (2020). Toxicity Potential of Cyanogenic Glycosides in Edible Plants. Medical Toxicology. https://doi.org/10.5772/INTECHOPEN.91408Test; Nzwalo, H., & Cliff, J. (2011). Konzo: from poverty, cassava, and cyanogen intake to toxiconutritional neurological disease. PLoS neglected tropical diseases, 5(6). https://doi.org/10.1371/JOURNAL.PNTD.0001051Test; Ogbonna, C., Braatz de Andrade, R., Rabbi, Y., Mueller, A., Jorge de Oliveira, E., & Bauchet, J. (2021). Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root. The Plant Journal, 105(3), 754–770. https://doi.org/10.1111/TPJ.15071Test; Ospina, M. (2018). Evaluación de propiedades nutricionales y de calidad comercial en siete centros de diversidad de yuca con genotipificación para contenido de cianuro. https://repositorio.unal.edu.co/handle/unal/63355Test; Ospina, M., Pizarro, M., Tran, T., Ricci, J., Belalcazar, J., Luna, L., Londoño, F., Salazar, S., Ceballos, H., Dufour, D., & Becerra Lopez-Lavalle, L. A. (2021). Cyanogenic, carotenoids and protein composition in leaves and roots across seven diverse population found in the world cassava germplasm collection at CIAT, Colombia. International Journal of Food Science and Technology, 56(3). https://doi.org/10.1111/ijfs.14888Test Parra Olarte, J. L. (2019). Subsector Productivo de la Yuca. https://sioc.minagricultura.gov.co/Yuca/Documentos/2019-06Test- 30%20Cifras%20Sectoriales.pdf; Parra, L. (2019). Subsector Productivo de la Yuca. https://sioc.minagricultura.gov.co/Yuca/Documentos/2019-06Test- 30%20Cifras%20Sectoriales.pdf; Pičmanová, M., Neilson, H., Motawia, S., Olsen, E., Agerbirk, N., Gray, J., Flitsch, S., Meier, S., Silvestro, D., Jørgensen, K., Sánchez, R., Møller, L., & Bjarnholt, N. (2015). A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal, 469(3), 375–389. https://doi.org/10.1042/BJ20150390Test; Poulton, J. (1990). Cyanogenesis in Plants. Biological Reviews, 5(2), 126–141. https://doi.org/10.1111/j.1469-185X.1930.tb00896.xTest; Quiroga, P. (2009). Revisión de la toxicocinética y la toxicodinamia del ácido cianhídrico y los cianuros. https://www.researchgate.net/publication/262441449Test; Ramírez, V. (2011). Toxicidad del cianuro. Investigación bibliográfica de sus efectos en animales y en el hombre. Anales de la Facultad de Medicina, 71(1). https://doi.org/10.15381/anales.v71i1.74Test; Rijssen, W., Morris, J., & Eloff, N. (2013). Food safety: Importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz). Journal of Agricultural and Food Chemistry, 61(35), 8333–8339. https://doi.org/10.1021/JF401153X/ASSET/IMAGES/LARGE/JF-2013-01153X_0002.JPEGTest; Rivadeneyra, E., Rosas, C., Vázquez, A., Díaz, R., & Rodríguez, L. (2019). Efecto de la acetona cianohidrina, un derivado de la yuca, sobre la actividad motora y la función renal y hepática en ratas Wistar. Neurología, 34(5), 300–308. https://doi.org/10.1016/J.NRL.2017.01.004Test; Rodas, I. (2000). Ingenio yuquero en el Cauca: estudio de factibilidad. Centro Internacional de Agricultura Tropical . https://hdl.handle.net/10568/54087Test; Rodríguez, R., & Suárez, B. (2021). Analysis of Cyanogenic Compounds Derived from Mandelonitrile by Ultrasound-Assisted Extraction and High-Performance Liquid Chromatography in Rosaceae and Sambucus Families. Molecules (Basel, Switzerland), 26(24). https://doi.org/10.3390/molecules26247563Test; Schmidt, F., Cho, S., Olsen, C., Yang, S., Møller, B., & Jørgensen, K. (2018). Diurnal regulation of cyanogenic glucoside biosynthesis and endogenous turnover in cassava. Plant Direct, 2(2). https://doi.org/10.1002/pld3.38Test; Schrenk, D., Bignami, M., Bodin, L., Chipman, K., del Mazo, J., Grasl, B., Hogstrand, C., Hoogenboom, L, Leblanc, C., Nebbia, S., Nielsen, E., Ntzani, E., Petersen, A., Sand, S., Vleminckx, C., Wallace, H., Benford, D., Brimer, L., Mancini, R., … Schwerdtle, T. (2019). Evaluation of the health risks related to the presence of cyanogenic glycosides in foods other than raw apricot kernels. EFSA Journal, 17(4), e05662. https://doi.org/10.2903/J.EFSA.2019.5662Test; Senning, A. (2007). Elsevier’s dictionary of chemoetymology : the whies and whences of chemical nomenclature and terminology. 433. https://books.google.com/books?id=Fl4sdCYrq3cC&pg=PA344Test; Sun, Z., Zhang, K., Chen, C., Wu, Y., Tang, Y., Georgiev, M. I., Zhang, X., Lin, M., & Zhou, M. (2018). Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Applied Microbiology and Biotechnology, 102(1), 9–16. https://doi.org/10.1007/S00253-017-8559-Z/METRICSTest; Tanaka, T., Kimura, K., Kan, K., Katori, Y., Michishita, K., Nakano, H., & Sasamoto, T. (2020). Quantification of amygdalin, prunasin, total cyanide and free cyanide in powdered loquat seeds. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 1–7. https://doi.org/10.1080/19440049.2020.1778186Test; Thodberg, S., Sørensen, M., Bellucci, M., Crocoll, C., Bendtsen, A. K., Nelson, D. R., Motawia, M. S., Møller, B. L., & Neilson, E. H. J. (2020). A flavin-dependent monooxygenase catalyzes the initial step in cyanogenic glycoside synthesis in ferns. Communications Biology 2020 3:1, 3(1), 1–11. https://doi.org/10.1038/s42003-020-01224-5Test; Torkaman, P., Veiga, M., de Andrade, P., Oliveira, A., Motta, S., Jesús, L., & Lavkulich, M. (2021). Leaching gold with cassava: An option to eliminate mercury use in artisanal gold mining. Journal of Cleaner Production, 311, 127531. https://doi.org/10.1016/J.JCLEPRO.2021.127531Test; Umuhozariho, M., Shayo, N., Msuya, J., & Sallah, P. (2014). Cyanide and selected nutrients content of different preparations of leaves from three cassava species. African Journal of Food Science, 8(3), 122–129. https://doi.org/10.5897/AJFS2013.1100Test; Vetter, J. (2017). Plant Cyanogenic Glycosides (pp. 287–317). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6464-4_19Test; Villada, W. (2010). Determinación experimental de las condiciones de operación para el proceso de hidrólisis enzimática de almidón de yuca nativa de la región amazónica en la ciudad de Leticia [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/7496Test; Wink, M. (2010). Biochemistry of Plant Secondary Metabolism: Second Edition. En Biochemistry of Plant Secondary Metabolism: Second Edition (Vol. 40). https://doi.org/10.1002/9781444320503Test; Yeoh, H., Tatsuma, T., & Oyama, N. (1998). Monitoring the cyanogenic potential of cassava: the trend towards biosensor development. TrAC Trends in Analytical Chemistry, 17(4), 234–240. https://doi.org/10.1016/S0165-9936Test(98)00009-0; Zagrobelny, M., Bak, S., & Møller, B. L. (2008). Cyanogenesis in plants and arthropods. En Phytochemistry (Vol. 69, Número 7, pp. 1457–1468). Pergamon. https://doi.org/10.1016/j.phytochem.2008.02.019Test; Zagrobelny, M., Bak, S., Rasmussen, V., Jørgensen, B., Naumann, M., & Møller, L. (2004). Cyanogenic glucosides and plant-insect interactions. Phytochemistry, 65(3), 293–306. https://doi.org/10.1016/J.PHYTOCHEM.2003.10.016Test; Zagrobelny, M., de Castro, P., Møller, B. L., & Bak, S. (2018). Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. Insects 2018, Vol. 9, Page 51, 9(2), 51. https://doi.org/10.3390/INSECTS9020051Test; Zagrobelny, M., & Møller, L. (2011). Cyanogenic glucosides in the biological warfare between plants and insects: The Burnet moth-Birdsfoot trefoil model system. Phytochemistry, 72(13), 1585–1592. https://doi.org/10.1016/J.PHYTOCHEM.2011.02.023Test; Zhong, Y., Xu, T., Ji, S., Wu, X., Zhao, T., Li, S., Zhang, P., Li, K., & Lu, B. (2021). Effect of ultrasonic pretreatment on eliminating cyanogenic glycosides and hydrogen cyanide in cassava. Ultrasonics Sonochemistry, 78, 105742. https://doi.org/10.1016/J.ULTSONCH.2021.105742Test; Zuk, M., Pelc, K., Szperlik, J., Sawula, A., & Szopa, J. (2020). Metabolism of the Cyanogenic Glucosides in Developing Flax: Metabolic Analysis, and Expression Pattern of Genes. Metabolites 2020, Vol. 10, Page 288, 10(7), 288. https://doi.org/10.3390/METABO10070288Test; https://repositorio.unal.edu.co/handle/unal/86150Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/
الإتاحة: https://doi.org/10.1016/s0003-2670Test(00)89411-810.1002/jsfa.274029040810.1079/9781845934248.000010.1016/S1575-0922(04)74638-010.5772/INTECHOPEN.9140810.1111/j.1469-185X.1930.tb00896.x10.15381/anales.v71i1.7410.2903/J.EFSA.2019.566210.1007/978-94-007-6464-4_1910.1002/9781444320503
https://repositorio.unal.edu.co/handle/unal/86150Test
https://repositorio.unal.edu.coTest/
حقوق: Atribución-NoComercial 4.0 Internacional ; http://creativecommons.org/licenses/by-nc/4.0Test/ ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.EBD791F3
قاعدة البيانات: BASE