Quantum correlations between light and the kilogram-mass mirrors of LIGO

التفاصيل البيبلوغرافية
العنوان: Quantum correlations between light and the kilogram-mass mirrors of LIGO
المؤلفون: N. Kijbunchoo, K. Mason, Simone Mozzon, Rana X. Adhikari, J. McIver, P. J. Veitch, L. Xiao, L. E. H. Datrier, C. J. Perez, R. L. Savage, M. Laxen, Anchal Gupta, N. Bode, A. Mullavey, T. J. N. Nelson, P. Fulda, A. A. Ciobanu, Benno Willke, A. D. Viets, C. Vorvick, C. Cahillane, S. Márka, A. Fernandez-Galiana, J. Betzwieser, Slawomir Gras, E. K. Gustafson, Fabrice Matichard, J. S. Kissel, M. J. Szczepańczyk, Denis Martynov, C. Di Fronzo, B. K. Berger, T. Mistry, S. T. Countryman, H. Overmier, L. K. Nuttall, R. Macas, G. Billingsley, M. MacInnis, J. H. Romie, Y. K. Lecoeuche, M. Tse, P.H. Nguyen, N. A. Holland, D. M. Macleod, T. Sadecki, G. Vajente, S. McCormick, C. M. Mow-Lowry, Xie Chen, Alexander Urban, D. Sellers, D. C. Vander-Hyde, K. Venkateswara, C. Osthelder, P. Thomas, Haocun Yu, P. Booker, Eyal Schwartz, J. G. Bartlett, R. Gustafson, M. E. Zucker, B. A. Weaver, J. G. Rollins, V. V. Frolov, Y. R. Chen, J. C. Driggers, L. Sun, K. Merfeld, A. P. Spencer, D. D. Brown, D. Bhattacharjee, Rainer Weiss, Patrick Godwin, D. Schaetzl, K. L. Dooley, Kris Ryan, M. Kasprzack, E. J. Sanchez, K. Kawabe, T. Hardwick, S. M. Aston, Jun Liu, R. M. S. Schofield, G. Valdes, R. K. Hasskew, J. Zweizig, Alena Ananyeva, J. Hanks, A. Effler, M. Wade, M. Thomas, Rajesh Kumar, E. L. Merilh, N. A. Robertson, A. F. Helmling-Cornell, Koya Arai, K. Toland, T. M. Evans, P. B. Covas, A. Pele, Carl Blair, A. F. Brooks, S. E. Dwyer, B. J. J. Slagmolen, R. Abbott, Terry G. McRae, T. R. Saravanan, Nergis Mavalvala, Matthew Evans, S. J. Cooper, A. P. Lundgren, K. Riles, H. Yamamoto, A. M. Baer, David E. McClelland, Lee McCuller, G. Mendell, B. Lantz, Z. Márka, J. Hanson, C. L. Romel, Hang Yu, Robert J. McCarthy, M. Lormand, Roman Schnabel, J. Warner, D. Barker, M. Ball, R. Mittleman, P. J. King, G. Venugopalan, J. A. Giaime, J. Feicht, S. Kandhasamy, C. Whittle, D. C. Coyne, B. Sorazu, P. Dupej, Richard Gray, M. C. Heintze, Aaron Buikema, C. C. Wipf, K. E. Ramirez, M. Fyffe, S. Appert, K. R. Corley, Sebastien Biscans, K. A. Thorne, H. Radkins, K. D. Giardina, David J. Ottaway, T. Etzel, F. Clara, J. R. Palamos, W. Parker, C. Adams, R. M. Blair, D. Sigg, S. W. Ballmer, J. S. Areeda, G. Moreno, T. J. Massinger, T. Vo, B. B. Lane, Lisa Barsotti, M. Landry, J. R. Smith, R. Bork, C. Austin, L. Zhang, K. A. Strain, J. Jones, Y. Asali, S. Karki, Ethan Payne, Jonathan Richardson, S. Banagiri, Richard J. Oram, A. Bramley, J. Oberling, M. Pirello, A. C. Green, C. I. Torrie, Douglas Davis, C. Gray, T. J. Shaffer, M. P. Ross, Peter Fritschel, K. C. Cannon, J. N. Leviton, R. L. Ward, L. E. Sanchez, G. Traylor, S. Soni, Thomas Corbitt, F. Meylahn, E. Goetz, G. L. Mansell
المصدر: BASE-Bielefeld Academic Search Engine
LIGO Scientific Collaboration, Yu, H, McCuller, L, Tse, M, Kijbunchoo, N, Barsotti, L, Mavalvala, N, Lundgren, A, Mozzon, S & Nuttall, L 2020, ' Quantum correlations between light and the kilogram-mass mirrors of LIGO ', Nature, vol. 583, pp. 43-47 . https://doi.org/10.1038/s41586-020-2420-8Test
بيانات النشر: Springer Science and Business Media LLC, 2020.
سنة النشر: 2020
مصطلحات موضوعية: Physics, Multidisciplinary, Photon, Uncertainty principle, 010308 nuclear & particles physics, Gravitational wave, Quantum limit, Quantum correlation, RCUK, 01 natural sciences, 7. Clean energy, LIGO, Computational physics, Momentum, 0103 physical sciences, 010306 general physics, Quantum, STFC
الوصف: The measurement of minuscule forces and displacements with ever greater precision is inhibited by the Heisenberg uncertainty principle, which imposes a limit to the precision with which the position of an object can be measured continuously, known as the standard quantum limit1,2,3,4. When light is used as the probe, the standard quantum limit arises from the balance between the uncertainties of the photon radiation pressure applied to the object and of the photon number in the photoelectric detection. The only way to surpass the standard quantum limit is by introducing correlations between the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light that it reflects5. Here we confirm experimentally the theoretical prediction5 that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). We characterize and compare noise spectra taken without squeezing and with squeezed vacuum states injected at varying quadrature angles. After subtracting classical noise, our measurements show that the quantum mechanical uncertainties in the phases of the 200-kilowatt laser beams and in the positions of the 40-kilogram mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty that is a factor of 1.4 (3 decibels) below the standard quantum limit. We anticipate that the use of quantum correlations will improve not only the observation of gravitational waves, but also more broadly future quantum noise-limited measurements.
وصف الملف: application/pdf; image/jpeg
تدمد: 1476-4687
0028-0836
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7c42fde58828b4c75208ec84b4a9a0aeTest
https://doi.org/10.1038/s41586-020-2420-8Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....7c42fde58828b4c75208ec84b4a9a0ae
قاعدة البيانات: OpenAIRE