يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"Guo, Chin-Lin"', وقت الاستعلام: 0.78s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Ministry of Science and Technology, Taiwan, Academia Sinica

    المصدر: Cancer Immunology, Immunotherapy ; volume 70, issue 5, page 1435-1450 ; ISSN 0340-7004 1432-0851

    مصطلحات موضوعية: Cancer Research, Oncology, Immunology, Immunology and Allergy

    الوصف: Background Malignant pleural effusion (MPE)-macrophage (Mφ) of lung cancer patients within unique M1/M2 spectrum showed plasticity in M1–M2 transition. The M1/M2 features of MPE-Mφ and their significance to patient outcomes need to be clarified; furthermore, whether M1-repolarization could benefit treatment remains unclear. Methods Total 147 stage-IV lung adenocarcinoma patients undergoing MPE drainage were enrolled for profiling and validation of their M1/M2 spectrum. In addition, the MPE-Mφ signature on overall patient survival was analyzed. The impact of the M1-polarization strategy of patient-derived MPE-Mφ on anti-cancer activity was examined. Results We found that MPE-Mφ expressed both traditional M1 (HLA-DRA) and M2 (CD163) markers and showed a wide range of M1/M2 spectrum. Most of the MPE-Mφ displayed diverse PD-L1 expression patterns, while the low PD-L1 expression group was correlated with higher levels of IL-10. Among these markers, we identified a novel two-gene MPE-Mφ signature, IL-1β and TGF-β1, representing the M1/M2 tendency, which showed a strong predictive power in patient outcomes in our MPE-Mφ patient cohort ( N = 60, p = 0.013) and The Cancer Genome Atlas Lung Adenocarcinoma dataset ( N = 478, p < 0.0001). Significantly, β-glucan worked synergistically with IFN-γ to reverse the risk signature by repolarizing the MPE-Mφ toward the M1 pattern, enhancing anti-cancer activity. Conclusions We identified MPE-Mφ on the M1/M2 spectrum and plasticity and described a two-gene M1/M2 signature that could predict the outcome of late-stage lung cancer patients. In addition, we found that “re-education” of these MPE-Mφ toward anti-cancer M1 macrophages using clinically applicable strategies may overcome tumor immune escape and benefit anti-cancer therapies.

  2. 2
    دورية أكاديمية

    المساهمون: National Science Foundation

    المصدر: Scientific Reports ; volume 8, issue 1 ; ISSN 2045-2322

    مصطلحات موضوعية: Multidisciplinary

    الوصف: High-degree time-multiplexed multifocal multiphoton microscopy was expected to provide a facile path to scanningless optical-sectioning and the fast imaging of dynamic three-dimensional biological systems. However, physical constraints on typical time multiplexing devices, arising from diffraction in the free-space propagation of light waves, lead to significant manufacturing difficulties and have prevented the experimental realization of high-degree time multiplexing. To resolve this issue, we have developed a novel method using optical fiber bundles of various lengths to confine the diffraction of propagating light waves and to create a time multiplexing effect. Through this method, we experimentally demonstrate the highest degree of time multiplexing ever achieved in multifocal multiphoton microscopy (~50 times larger than conventional approaches), and hence the potential of using simply-manufactured devices for scanningless optical sectioning of biological systems.

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية