دورية أكاديمية

Plant Traits and Phylogeny Predict Soil Carbon and Nutrient Cycling in Mediterranean Mixed Forests.

التفاصيل البيبلوغرافية
العنوان: Plant Traits and Phylogeny Predict Soil Carbon and Nutrient Cycling in Mediterranean Mixed Forests.
المؤلفون: Prieto-Rubio, J., Perea, A., Garrido, J. L., Alcántara, J. M., Azcón-Aguilar, C., López-García, A., Rincón, A.
المصدر: Ecosystems; Aug2023, Vol. 26 Issue 5, p1047-1060, 14p
مصطلحات موضوعية: MIXED forests, NUTRIENT cycles, CARBON cycle, BIOTIC communities, FOREST soils
مصطلحات جغرافية: SPAIN
مستخلص: Soil functioning is closely linked to the interactions between biological communities with the physical environment. Yet, the impact of plant community attributes on metabolic processes promoting soil nutrient cycling remains largely unknown. We hypothesized that the plant community acts as a regulating agent of nutrient mobilization in soils according to the phylogenetic and morpho-functional traits of plant species of which it is composed. Rhizosphere soils were collected in autumn and spring under 32 tree and shrub species in two Mediterranean mixed forests (four plots in each) located in southern Spain, and nine soil enzymatic activities related to C, N and P mobilization were assessed. Phylogeny and morpho-functional traits of plant species were recorded and their imprint in soil enzymatic activities across forests was determined. The results showed a plant phylogenetic signal for N mobilization in both forests, while it varied across forests for non-labile C and P mobilization. The plant phylogenetic signals were primarily driven by lineages that diversified through the Miocene, about 25 Myr ago. In addition, leaf traits and plant's mycorrhizal type explained soil enzymatic activities independently from phylogeny. C and P mobilization increased under ectomycorrhizal plants, whilst enhanced N mobilization did occur under arbuscular mycorrhizal ones. The plant community composition led to a different carbon and nutrient mobilization degree, which in turn was mediated by distinct microbial communities mirroring differentiated resource-acquisition strategies of plants. Our results highlight the role of plant traits and mycorrhizal interactions in modulating carbon and nutrient cycling in Mediterranean mixed forest soils. [ABSTRACT FROM AUTHOR]
Copyright of Ecosystems is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:14329840
DOI:10.1007/s10021-022-00815-z