يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"VECTION"', وقت الاستعلام: 1.47s تنقيح النتائج
  1. 1

    المصدر: Experimental Brain Research

    الوصف: The vestibular system facilitates gaze and postural stability via the vestibulo-ocular (VOR) and vestibulo-spinal reflexes, respectively. Cortical and perceptual mechanisms can modulate long-duration VOR responses, but little is known about whether high-order neural phenomena can modulate short-latency vestibulo-spinal responses. Here, we investigate this by assessing click-evoked cervical vestibular myogenic-evoked potentials (VEMPS) during visual roll motion that elicited an illusionary sensation of self-motion (i.e. vection). We observed that during vection, the amplitude of the VEMPs was enhanced when compared to baseline measures. This modulation in VEMP amplitude was positively correlated with the subjective reports of vection strength. That is, those subjects reporting greater subjective vection scores exhibited a greater increase in VEMP amplitude. Control experiments showed that simple arousal (cold-induced discomfort) also increased VEMP amplitude but that, unlike vection, it did not modulate VEMP amplitude linearly. In agreement, small-field visual roll motion that did not induce vection failed to increase VEMP amplitude. Taken together, our results demonstrate that vection can modify the response of vestibulo-collic reflexes. Even short-latency brainstem vestibulo-spinal reflexes are influenced by high-order mechanisms, illustrating the functional importance of perceptual mechanisms in human postural control. As VEMPs are inhibitory responses, we argue that the findings may represent a mechanism whereby high-order CNS mechanisms reduce activity levels in vestibulo-collic reflexes, necessary for instance when voluntary head movements need to be performed.

  2. 2
    دورية أكاديمية

    المساهمون: 宮崎, 淳吾, 山本, 洋紀, 10332727

    الوصف: 映像に酔うと右脳と左脳の活動が乖離する現象を発見 -安全で快適な高臨場感映像技術開発の足がかりに-. 京都大学プレスリリース. 2015-05-26. ; Visually induced motion sickness (VIMS) is triggered in susceptible individuals by stationary viewing of moving visual scenes. VIMS is often preceded by an illusion of self-motion (vection) and/or by inappropriate optokinetic nystagmus (OKN) responses associated with increased activity in the human motion-sensitive middle temporal area (MT+). Neuroimaging studies have reported predominant right hemispheric activation in MT+ during both vection and OKN, suggesting that VIMS may result from desynchronization of activity between left and right MT+ cortices. However, this possibility has not been directly tested. To this end, we presented VIMS-free and VIMS-inducing movies in that order while measuring the temporal correlations between corresponding left and right visual cortices (including MT+) using functional magnetic resonance imaging. The inter-hemispheric correlation was reduced significantly during the viewing of the VIMS-inducing movie compared to the control VIMS-free movie in the MT+ of subjects reporting VIMS, but not in insusceptible subjects. In contrast, there were no significant inter-hemispheric differences within VIMS-free or VIMS-inducing movie exposure for visual area V1, V2, V3, V3A or V7. Our findings provide the first evidence for an association between asynchronous bilateral MT+ activation and VIMS. Desynchronization of left and right MT+ regions may reflect hemispheric asymmetry in the activities of functional networks involved in eye movement control, vection perception and/or postural control.

    وصف الملف: application/pdf

    العلاقة: https://www.kyoto-u.ac.jp/ja/research-news/2015-05-26-0Test; http://hdl.handle.net/2433/198117Test; AA00640970; Experimental Brain Research; 233; 2421; 2431