دورية أكاديمية

Afatinib, an EGFR inhibitor, decreases EMT and tumorigenesis of Huh-7 cells by regulating the ERK-VEGF/MMP9 signaling pathway.

التفاصيل البيبلوغرافية
العنوان: Afatinib, an EGFR inhibitor, decreases EMT and tumorigenesis of Huh-7 cells by regulating the ERK-VEGF/MMP9 signaling pathway.
المؤلفون: Chen, Yafei1 (AUTHOR), Chen, Xin1 (AUTHOR), Ding, Xiaojun1 (AUTHOR), Wang, Yingwei1 (AUTHOR) yingweiw_wyw@163.com
المصدر: Molecular Medicine Reports. Oct2019, Vol. 20 Issue 4, p3317-3325. 9p.
مصطلحات موضوعية: *CELL migration inhibition, *VASCULAR endothelial growth factors, *EPIDERMAL growth factor receptors, *WESTERN immunoblotting, *NEOPLASTIC cell transformation, *THERAPEUTIC embolization
مستخلص: Transcatheter arterial embolization (TAE) therapy has been used in the treatment of inoperable hepatocellular carcinoma (HCC). However, tumor recurrence and metastasis are common in patients after TAE, and these processes may be caused by circulating tumor cells (CTCs). Epithelial-mesenchymal transition (EMT) serves important roles in CTCs, and abnormal expression and activation of epidermal growth factor receptor (EGFR) is common in cancer cells. Afatinib is an EGFR-tyrosine kinase inhibitor (TKI). The present study aimed to investigate the effects of afatinib on EMT and tumorigenesis in HCC cells. Western blot analysis suggested that afatinib was able to effectively suppress overactivation of EGFR. Moreover, the expression levels of EMT- and metastasis-associated genes were found to be modulated by afatinib through EGFR inhibition. In addition, Cell Counting Kit-8 and Transwell assays suggested that the viability, migration and invasion of HCC cells were inhibited by afatinib through EGFR inhibition. Furthermore, the activity of the ERK signaling pathway and the expression levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP9) were decreased following treatment with afatinib in vitro. Collectively, the present results suggested that the inhibitory effects of afatinib on EMT and tumorigenesis may be associated with the ERK-VEGF/MMP9 signaling pathway. The present study provides new insights into understanding the mechanism underlying HCC and may facilitate the development of novel therapeutic strategies to treat HCC recurrence. [ABSTRACT FROM AUTHOR]
قاعدة البيانات: Academic Search Index
الوصف
تدمد:17912997
DOI:10.3892/mmr.2019.10562