دورية أكاديمية

Quality by Design-driven investigation of the mechanical properties of mucoadhesive films for needleless anesthetics administration

التفاصيل البيبلوغرافية
العنوان: Quality by Design-driven investigation of the mechanical properties of mucoadhesive films for needleless anesthetics administration
المؤلفون: Luiz Fernando Machado Ferreira, Douglas Vieira Thomaz, Maíra Peres Ferreira Duarte, Renata Fonseca Vianna Lopez, Vinícius Pedrazzi, Osvaldo de Freitas, Renê Couto
المصدر: Revista de Ciências Farmacêuticas Básica e Aplicada, Vol 42, Pp 1-12 (2021)
بيانات النشر: São Paulo State University (UNESP), 2021.
سنة النشر: 2021
المجموعة: LCC:Pharmaceutical industry
LCC:Pharmacy and materia medica
مصطلحات موضوعية: biocompatible materials, buccal drug administration, hypromellose derivatives, lidocaine prilocaine drug combination, multivariate analysis, polymers, Pharmaceutical industry, HD9665-9675, Pharmacy and materia medica, RS1-441
الوصف: Objectives: To systematically evaluate the effects of hydroxypropyl methyl cellulose (HPMC) type (E5LV, E15LV, and K100LV); plasticizer type (glycerol and mannitol), plasticizer loading (0.12 and 0.24% w/w); and loading of prilocaine and lidocaine hydrochlorides combined at 1:1 ratio (0 and 47 mg/cm2) in the mechanical properties of buccal films. Methods: A quality by design (QbD) approach based on a full factorial design (3 x 23) and complementarily multivariate statistical tools i.e., principal component analysis (PCA), response surface methodology (RSM), and correlation matrix were used in this pursuit. The thickness, elongation at break, tensile strength, force at break, and Young`s modulus of the anesthetic buccal films obtained by solvent casting were assessed. Results: The QbD, PCA and RSM altogether demonstrated that all studied formulation variables, mainly the drug loading, affect the mechanical properties of the films at different significance levels. The multivariate analysis yielded the modelling of elongation at break, tensile strength, and force at break, which significantly correlated with each other. The drugs exerted a synergic plasticizing effect on the films, and the use of HPMC K100 LV (with greater hydroxypropyl substitution degree and viscosity) and mannitol favored their elasticity and resistance. Furthermore, the majority of the films fulfilled the requirements for buccal administration due to their softness and mechanical resistance. Conclusion: Mannitol is suitable plasticizer for manufacturing HPMC anesthetic buccal films with improved mechanical properties. These results are a step forward in the rational development of formulations for the replacement of needles in dentistry
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1808-4532
2179-443X
العلاقة: http://rcfba.fcfar.unesp.br/index.php/ojs/article/view/707Test; https://doaj.org/toc/1808-4532Test; https://doaj.org/toc/2179-443XTest
الوصول الحر: https://doaj.org/article/4f48dbdcbb844bc2aec02ec51884fe0eTest
رقم الانضمام: edsdoj.4f48dbdcbb844bc2aec02ec51884fe0e
قاعدة البيانات: Directory of Open Access Journals