دورية أكاديمية

Anaerobiosis favors biosynthesis of single and multi-element nanostructures.

التفاصيل البيبلوغرافية
العنوان: Anaerobiosis favors biosynthesis of single and multi-element nanostructures.
المؤلفون: Mirtha Ríos-Silva, Myriam Pérez, Roberto Luraschi, Esteban Vargas, Claudia Silva-Andrade, Jorge Valdés, Juan Marcelo Sandoval, Claudio Vásquez, Felipe Arenas
المصدر: PLoS ONE, Vol 17, Iss 10, p e0273392 (2022)
بيانات النشر: Public Library of Science (PLoS), 2022.
سنة النشر: 2022
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: Herein we report the use of an environmental multimetal(loid)-resistant strain, MF05, to biosynthesize single- or multi-element nanostructures under anaerobic conditions. Inorganic nanostructure synthesis typically requires methodologies and conditions that are harsh and environmentally hazardous. Thus, green/eco-friendly procedures are desirable, where the use of microorganisms and their extracts as bionanofactories is a reliable strategy. First, MF05 was entirely sequenced and identified as an Escherichia coli-related strain with some genetic differences from the traditional BW25113. Secondly, we compared the CdS nanostructure biosynthesis by whole-cell in a design defined minimal culture medium containing sulfite as the only sulfur source to obtain sulfide reduction from a low-cost chalcogen reactant. Under anaerobic conditions, this process was greatly favored, and irregular CdS (ex. 370 nm; em. 520-530 nm) was obtained. When other chalcogenites were tested (selenite and tellurite), only spherical Se0 and elongated Te0 nanostructures were observed by TEM and analyzed by SEM-EDX. In addition, enzymatic-mediated chalcogenite (sulfite, selenite, and tellurite) reduction was assessed by using MF05 crude extracts in anaerobiosis; similar results for nanostructures were obtained; however Se0 and Te0 formation were more regular in shape and cleaner (with less background). Finally, the in vitro nanostructure biosynthesis was assessed with salts of Ag, Au, Cd, and Li alone or in combination with chalcogenites. Several single or binary nanostructures were detected. Our results showed that MF05 is a versatile anaerobic bionanofactory for different types of inorganic NS. synthesis.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1932-6203
العلاقة: https://doaj.org/toc/1932-6203Test
DOI: 10.1371/journal.pone.0273392
الوصول الحر: https://doaj.org/article/aec60583f2754c35bfc241c19446754eTest
رقم الانضمام: edsdoj.60583f2754c35bfc241c19446754e
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19326203
DOI:10.1371/journal.pone.0273392