دورية أكاديمية

Prediction of bacterial E3 ubiquitin ligase effectors using reduced amino acid peptide fingerprinting.

التفاصيل البيبلوغرافية
العنوان: Prediction of bacterial E3 ubiquitin ligase effectors using reduced amino acid peptide fingerprinting.
المؤلفون: McDermott, Jason E., Cort, John R., Nakayasu, Ernesto S., Pruneda, Jonathan N., Overall, Christopher, Adkins, Joshua N.
المصدر: PeerJ; Jun2019, p1-19, 19p
مصطلحات موضوعية: AMINO acids, UBIQUITIN ligases, CARRIER proteins, AMINO acid sequence, PEPTIDES, BACTERIAL genomes
مستخلص: Background. Although pathogenic Gram-negative bacteria lack their own ubiquitination machinery, they have evolved or acquired virulence effectors that can manipulate the host ubiquitination process through structural and/or functional mimicry of host machinery. Many such effectors have been identified in a wide variety of bacterial pathogens that share little sequence similarity amongst themselves or with eukaryotic ubiquitin E3 ligases. Methods. To allow identification of novel bacterial E3 ubiquitin ligase effectors from protein sequences we have developed a machine learning approach, the SVM-based Identification and Evaluation of Virulence Effector Ubiquitin ligases (SIEVE-Ub). We extend the string kernel approach used previously to sequence classification by introducing reduced amino acid (RED) alphabet encoding for protein sequences. Results. We found that 14mer peptides with amino acids represented as simply either hydrophobic or hydrophilic provided the best models for discrimination of E3 ligases from other effector proteins with a receiver-operator characteristic area under the curve (AUC) of 0.90. When considering a subset of E3 ubiquitin ligase effectors that do not fall into known sequence based families we found that the AUC was 0.82, demonstrating the effectiveness of our method at identifying novel functional family members. Feature selection was used to identify a parsimonious set of 10 RED peptides that provided good discrimination, and these peptides were found to be located in functionally important regions of the proteins involved in E2 and host target protein binding. Our general approach enables construction of models based on other effector functions. We used SIEVE-Ub to predict nine potential novel E3 ligases from a large set of bacterial genomes. [ABSTRACT FROM AUTHOR]
Copyright of PeerJ is the property of PeerJ Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:21678359
DOI:10.7717/peerj.7055