دورية أكاديمية

Mix-and-inject XFEL crystallography reveals gated conformational dynamics during enzyme catalysis.

التفاصيل البيبلوغرافية
العنوان: Mix-and-inject XFEL crystallography reveals gated conformational dynamics during enzyme catalysis.
المؤلفون: Dasgupta, Medhanjali, Budday, Dominik, de Oliveira, Saulo H. P., Madzelan, Peter, Marchany-Rivera, Darya, Seravalli, Javier, Hayes, Brandon, Sierra, Raymond G., Boutet, Sébastien, Hunter, Mark S., Alonso-Mori, Roberto, Batyuk, Alexander, Wierman, Jennifer, Lyubimov, Artem, Brewster, Aaron S., Sauter, Nicholas K., Applegate, Gregory A., Tiwari, Virendra K., Berkowitz, David B., Thompson, Michael C.
المصدر: Proceedings of the National Academy of Sciences of the United States of America; 12/17/2019, Vol. 116 Issue 51, p25634-25640, 7p
مصطلحات موضوعية: ENZYME kinetics, CATALYSIS, FREE electron lasers, CRYSTALLOGRAPHY, X-ray crystallography
مستخلص: How changes in enzyme structure and dynamics facilitate passage along the reaction coordinate is a fundamental unanswered question. Here, we use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL), ambient-temperature X-ray crystallography, computer simulations, and enzyme kinetics to characterize how covalent catalysis modulates isocyanide hydratase (ICH) conformational dynamics throughout its catalytic cycle. We visualize this previously hypothetical reaction mechanism, directly observing formation of a thioimidate covalent intermediate in ICH microcrystals during catalysis. ICH exhibits a concerted helical displacement upon active-site cysteine modification that is gated by changes in hydrogen bond strength between the cysteine thiolate and the backbone amide of the highly strained Ile152 residue. These catalysis-activated motions permit water entry into the ICH active site for intermediate hydrolysis. Mutations at a Gly residue (Gly150) that modulate helical mobility reduce ICH catalytic turnover and alter its pre-steady-state kinetic behavior, establishing that helical mobility is important for ICH catalytic efficiency. These results demonstrate that MISC can capture otherwise elusive aspects of enzyme mechanism and dynamics in microcrystalline samples, resolving long-standing questions about the connection between nonequilibrium protein motions and enzyme catalysis. [ABSTRACT FROM AUTHOR]
Copyright of Proceedings of the National Academy of Sciences of the United States of America is the property of National Academy of Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00278424
DOI:10.1073/pnas.1901864116