دورية أكاديمية

Conserved gene regulatory module specifies lateral neural borders across bilaterians.

التفاصيل البيبلوغرافية
العنوان: Conserved gene regulatory module specifies lateral neural borders across bilaterians.
المؤلفون: Yongbin Li, Di Zhao, Takeo Horie, Geng Chen, Hongcun Bao, Siyu Chen, Weihong Liu, Ryoko Horie, Tao Liang, Biyu Dong, Qianqian Feng, Qinghua Tao, Xiao Liu
المصدر: Proceedings of the National Academy of Sciences of the United States of America; 8/1/2017, Vol. 114 Issue 31, pE6352-E6360, 9p
مصطلحات موضوعية: CENTRAL nervous system, PERIPHERAL nervous system, GENE expression, CAENORHABDITIS elegans, CELL analysis
مستخلص: The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans. Second, orthologs of the vertebrate NPB specification module (Msx/vab-15, Pax3/7/pax-3, and Zic/ref-2) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref-2in C. elegans. Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans, Drosophila melanogaster,and Ciona intestinalis. We also identify a novel lateral neural border specifier, ZNF703/tlp-1, which functions synergistically with Msx/vab-15 in both C. elegans and Xenopus laevis. These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians. [ABSTRACT FROM AUTHOR]
Copyright of Proceedings of the National Academy of Sciences of the United States of America is the property of National Academy of Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00278424
DOI:10.1073/pnas.1704194114