يعرض 1 - 10 نتائج من 64 نتيجة بحث عن '"Gutiérrez, Marlen"', وقت الاستعلام: 0.85s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: National Center for Emerging and Zoonotic Infectious Diseases [https://www.cdc.gov/ncezid/dvbd/about.htmlTest]. ; Carrillo-Hernández MY, Ruiz-Saenz J, Villamizar LJ, Gómez-Rangel SY, Martínez-Gutierrez M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect Dis. 2018;18(1):61. https://doi.org/10.1186/s12879-018-2976-1Test. ; Mercado M, Acosta-Reyes J, Parra E, Pardo L, Rico A, Campo A, et al. Clinical and histopathological features of fatal cases with dengue and chikungunya virus co-infection in Colombia, 2014 to 2015. Eurosurveillance. 2016;21(22):30244. ; Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Mol Biol Rev. 1994;58(3):491–562. ; Halstead SB. ....

    وصف الملف: application/pdf

    العلاقة: BMC Complementary Medicine and Therapies; https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-021-03386-zTest; http://hdl.handle.net/20.500.12494/43636Test; Monsalve-Escudero, L.M., Loaiza-Cano, V., Pájaro-González, Y. et al. (2021) Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement Med Ther 21, 216 (2021). https://doi.org/10.1186/s12906-021-03386-zTest

  2. 2
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-021-03386-zTest; BMC Complementary Medicine and Therapies; National Center for Emerging and Zoonotic Infectious Diseases [https://www.cdc.gov/ncezid/dvbd/about.htmlTest].; Carrillo-Hernández MY, Ruiz-Saenz J, Villamizar LJ, Gómez-Rangel SY, Martínez-Gutierrez M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect Dis. 2018;18(1):61. https://doi.org/10.1186/s12879-018-2976-1Test.; Mercado M, Acosta-Reyes J, Parra E, Pardo L, Rico A, Campo A, et al. Clinical and histopathological features of fatal cases with dengue and chikungunya virus co-infection in Colombia, 2014 to 2015. Eurosurveillance. 2016;21(22):30244.; Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Mol Biol Rev. 1994;58(3):491–562.; Halstead SB. Reappearance of chikungunya, formerly called dengue, in the Americas. Emerg Infect Dis. 2015;21(4):557–61. https://doi.org/10.3201/eid2104.141723Test.; Sissoko D, Malvy D, Ezzedine K, Renault P, Moscetti F, Ledrans M, et al. Post-epidemic chikungunya disease on Reunion Island: course of rheumatic manifestations and associated factors over a 15-month period. PLoS Negl Trop Dis. 2009;3(3):e389. https://doi.org/10.1371/journal.pntd.0000389Test.; Manimunda SP, Vijayachari P, Uppoor R, Sugunan AP, Singh SS, Rai SK, et al. Clinical progression of chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans R Soc Trop Med Hyg. 2010;104(6):392–9. https://doi.org/10.1016/j.trstmh.2010.01.011Test.; Baronti C, Piorkowski G, Charrel RN, Boubis L, Leparc-Goffart I, de Lamballerie X. Complete coding sequence of zika virus from a French polynesia outbreak in 2013. Genome Announc. 2014;2(3):e00500–14.; Kuno G, Chang G-J. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol. 2007;152(4):687–96. https://doi.org/10.1007/s00705-006-0903-zTest.; Song B-H, Yun S-I, Woolley M, Lee Y-M. Zika virus: history, epidemiology, transmission, and clinical presentation. J Neuroimmunol. 2017;308:50–64. https://doi.org/10.1016/j.jneuroim.2017.03.001Test.; Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M, Mraz J, et al. Zika virus associated with microcephaly. N Engl J Med. 2016;374(10):951–8. https://doi.org/10.1056/NEJMoa1600651Test.; Parra B, Lizarazo J, Jiménez-Arango JA, Zea-Vera AF, González-Manrique G, Vargas J, et al. Guillain–Barré syndrome associated with Zika virus infection in Colombia. N Engl J Med. 2016;375(16):1513–23. https://doi.org/10.1056/NEJMoa1605564Test.; Rainey SM, Shah P, Kohl A, Dietrich I. Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges. J Gen Virol. 2014;95(3):517–30. https://doi.org/10.1099/vir.0.057422-0Test.; Espinal MA, Andrus JK, Jauregui B, Waterman SH, Morens DM, Santos JI, et al. Emerging and reemerging Aedes-transmitted arbovirus infections in the region of the Americas: implications for health policy. Am J Public Health. 2019;109(3):387–92. https://doi.org/10.2105/AJPH.2018.304849Test.; Pattnaik A, Sahoo BR, Pattnaik AK. Current status of Zika virus vaccines: successes and challenges. Vaccines. 2020;8(2):266. https://doi.org/10.3390/vaccines8020266Test.; Silva JV Jr, Lopes TR, de Oliveira-Filho EF, Oliveira RA, Durães-Carvalho R, Gil LH. Current status, challenges and perspectives in the development of vaccines against yellow fever, dengue, Zika and chikungunya viruses. Acta Trop. 2018;182:257–63. https://doi.org/10.1016/j.actatropica.2018.03.009Test.; Ghildiyal R, Gabrani R. Antiviral therapeutics for chikungunya virus. Expert opinion on therapeutic patents. 2020;30(6):467–80. https://doi.org/10.1080/13543776.2020.1751817Test.; Goh VSL, Mok C-K, Chu JJH. Antiviral natural products for arbovirus infections. Molecules. 2020;25(12):2796. https://doi.org/10.3390/molecules25122796Test.; Pielnaa P, Al-Saadawe M, Saro A, Dama MF, Zhou M, Huang Y, et al. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology. 2020;543:34–42. https://doi.org/10.1016/j.virol.2020.01.015Test.; Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285Test.; Dey A, Mukherjee A, Chaudhury M: Alkaloids from apocynaceae: origin, pharmacotherapeutic properties, and structure-activity studies. In: Studies in Natural Products Chemistry. Volume 52, edn.: Elsevier; 2017: 373–488.; Achenbach H, Benirschke M, Torrenegra R. Alkaloids and other compounds from seeds of Tabernaemontana cymosa. Phytochemistry. 1997;45(2):325–35. https://doi.org/10.1016/S0031-9422Test(96)00645-0.; Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci. 2017;114(2):206–14. https://doi.org/10.1073/pnas.1617020114Test.; Devogelaere B, Berke JM, Vijgen L, Dehertogh P, Fransen E, Cleiren E, et al. TMC647055, a potent nonnucleoside hepatitis C virus NS5B polymerase inhibitor with cross-genotypic coverage. Antimicrob Agents Chemother. 2012;56(9):4676–84. https://doi.org/10.1128/AAC.00245-12Test.; Ruiz FX, Hoang A, Das K, Arnold E. Structural basis of HIV-1 inhibition by nucleotide-competing reverse transcriptase inhibitor INDOPY-1. J Med Chem. 2019;62(21):9996–10002. https://doi.org/10.1021/acs.jmedchem.9b01289Test.; Gómez-Calderón C, Mesa-Castro C, Robledo S, Gómez S, Bolivar-Avila S, Diaz-Castillo F, et al. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on dengue and chikungunya virus infections. BMC Complement Altern Med. 2017;17(1):57. https://doi.org/10.1186/s12906-017-1562-1Test.; Monsalve-Escudero LM, Loaiza-Cano V, Zapata-Cardona MI, Quintero-Gil DC, Hernández-Mira E, Pájaro-González Y, et al. The antiviral and virucidal activities of voacangine and structural analogs extracted from Tabernaemontana cymosa depend on the dengue virus strain. Plants. 2021;10(7):1280. https://doi.org/10.3390/plants10071280Test.; Loaiza-Cano V, Monsalve-Escudero LM, Restrepo MP, Quintero-Gil DC, Pulido Muñoz SA, Galeano E, et al. In vitro and in silico anti-Arboviral activities of Dihalogenated phenolic Derivates of L-tyrosine. Molecules. 2021;26(11):3430. https://doi.org/10.3390/molecules26113430Test.; Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986;89(2):271–7. https://doi.org/10.1016/0022-1759Test(86)90368-6.; Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17(1):57–61.; Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 2019;19(1):298. https://doi.org/10.1186/s12906-019-2695-1Test.; Lavi A, Ngan CH, Movshovitz-Attias D, Bohnuud T, Yueh C, Beglov D, et al. Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins: Structure, Function, and Bioinformatics. 2013;81(12):2096–105. https://doi.org/10.1002/prot.24422Test.; Brenke R, Kozakov D, Chuang G-Y, Beglov D, Hall D, Landon MR, et al. Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics. 2009;25(5):621–7. https://doi.org/10.1093/bioinformatics/btp036Test.; Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. https://doi.org/10.1002/jcc.21334Test.; Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel. 1995;8(2):127–34. https://doi.org/10.1093/protein/8.2.127Test.; Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antivir Res. 2017;142:148–57. https://doi.org/10.1016/j.antiviral.2017.03.014Test.; Wu L, Dai J, Zhao X, Chen Y, Wang G, Li K. Chloroquine enhances replication of influenza a virus a/WSN/33 (H1N1) in dose-, time-, and MOI-dependent manners in human lung epithelial cells A549. J Med Virol. 2015;87(7):1096–103. https://doi.org/10.1002/jmv.24135Test.; Diosa-Toro M, Troost B, Van De Pol D, Heberle AM, Urcuqui-Inchima S, Thedieck K, et al. Tomatidine, a novel antiviral compound towards dengue virus. Antivir Res. 2019;161:90–9. https://doi.org/10.1016/j.antiviral.2018.11.011Test.; Gulick RM, Lalezari J, Goodrich J, Clumeck N, DeJesus E, Horban A, et al. Maraviroc for previously treated patients with R5 HIV-1 infection. N Engl J Med. 2008;359(14):1429–41. https://doi.org/10.1056/NEJMoa0803152Test.; Nowicka-Sans B, Gong Y-F, McAuliffe B, Dicker I, Ho H-T, Zhou N, et al. In vitro antiviral characteristics of HIV-1 attachment inhibitor BMS−626529, the active component of the prodrug BMS-663068. Antimicrob Agents Chemother. 2012;56(7):3498–507. https://doi.org/10.1128/AAC.00426-12Test.; Wang Y-M, Lu J-W, Lin C-C, Chin Y-F, Wu T-Y, Lin L-I, et al. Antiviral activities of niclosamide and nitazoxanide against chikungunya virus entry and transmission. Antivir Res. 2016;135:81–90. https://doi.org/10.1016/j.antiviral.2016.10.003Test.; Abraham R, Mudaliar P, Jaleel A, Srikanth J, Sreekumar E. High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in chikungunya virus infection. J Proteome. 2015;120:126–41. https://doi.org/10.1016/j.jprot.2015.03.007Test.; Abraham R, Singh S, Nair SR, Hulyalkar NV, Surendran A, Jaleel A, et al. Nucleophosmin (NPM1)/B23 in the proteome of human astrocytic cells restricts chikungunya virus replication. J Proteome Res. 2017;16(11):4144–55. https://doi.org/10.1021/acs.jproteome.7b00513Test.; Matusali G, Colavita F, Bordi L, Lalle E, Ippolito G, Capobianchi MR, et al. Tropism of the chikungunya virus. Viruses. 2019;11(2):175. https://doi.org/10.3390/v11020175Test.; Miner JJ, Diamond MS. Zika virus pathogenesis and tissue tropism. Cell Host Microbe. 2017;21(2):134–42. https://doi.org/10.1016/j.chom.2017.01.004Test.; Ferraz AC, TdFS M, da Cruz Nizer WS, dos Santos M, Tótola AH, JMS F, et al. Virucidal activity of proanthocyanidin against Mayaro virus. Antivir Res. 2019;168:76–81. https://doi.org/10.1016/j.antiviral.2019.05.008Test.; Sharma N, Murali A, Singh SK, Giri R. Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein. Int J Biol Macromol. 2017;104(Pt A):1046–54. https://doi.org/10.1016/j.ijbiomac.2017.06.105Test.; Lai Z-Z, Ho Y-J, Lu J-W. Harringtonine inhibits Zika virus infection through multiple mechanisms. Molecules. 2020;25(18):4082. https://doi.org/10.3390/molecules25184082Test.; Kaur P, Thiruchelvan M, Lee RCH, Chen H, Chen KC, Ng ML, et al. Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob Agents Chemother. 2013;57(1):155–67. https://doi.org/10.1128/AAC.01467-12Test.; Lai Z-Z, Ho Y-J, Lu J-W. Cephalotaxine inhibits Zika infection by impeding viral replication and stability. Biochem Biophys Res Commun. 2020;522(4):1052–8. https://doi.org/10.1016/j.bbrc.2019.12.012Test.; Passos GFS, Gomes MGM, TMd A, JXd A-J, SJMd S, JPM C, et al. Computer-aided design, synthesis, and antiviral evaluation of novel acrylamides as potential inhibitors of E3-E2-E1 glycoproteins complex from chikungunya virus. Pharmaceuticals. 2020;13(7):141.; Saxena T, Tandon B, Sharma S, Chameettachal S, Ray P, Ray AR, et al. Combined miRNA and mRNA signature identifies key molecular players and pathways involved in chikungunya virus infection in human cells. PLoS One. 2013;8(11):e79886. https://doi.org/10.1371/journal.pone.0079886Test.; Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, et al. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence. 2019;10(1):376–413. https://doi.org/10.1080/21505594.2019.1605803Test.; Franco EJ, Rodriquez JL, Pomeroy JJ, Hanrahan KC, Brown AN. The effectiveness of antiviral agents with broad-spectrum activity against chikungunya virus varies between host cell lines. Antivir Chem Chemother. 2018;26:2040206618807580.; Martínez-Gutierrez M, Castellanos JE, Gallego-Gómez JC. Statins reduce dengue virus production via decreased virion assembly. Intervirology. 2011;54(4):202–16. https://doi.org/10.1159/000321892Test.; Huang C-T, Chao T-L, Kao H-C, Pang Y-H, Lee W-H, Hsieh C-H, Chang S-Y, Huang H-C, Juan H-F: Enhancement of the IFN-β-induced host signature informs repurposed drugs for COVID-19. Heliyon 2020:e05646, 6, 12, DOI: https://doi.org/10.1016/j.heliyon.2020.e05646Test.; Brooks MJ, Burtseva EI, Ellery PJ, Marsh GA, Lew AM, Slepushkin AN, et al. Antiviral activity of arbidol, a broad-spectrum drug for use against respiratory viruses, varies according to test conditions. J Med Virol. 2012;84(1):170–81. https://doi.org/10.1002/jmv.22234Test.; Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001;14(4):778–809. https://doi.org/10.1128/CMR.14.4.778-809.2001Test.; Dong B, Xu L, Zhou A, Hassel BA, Lee X, Torrence PF, et al. Intrinsic molecular activities of the interferon-induced 2-5A-dependent RNase. J Biol Chem. 1994;269(19):14153–8. https://doi.org/10.1016/S0021-9258Test(17)36767-4.; Kottkamp AC, De Jesus E, Grande R, Brown JA, Jacobs AR, Lim JK, Stapleford KA. Atovaquone Inhibits Arbovirus Replication through the Depletion of Intracellular Nucleotides. J Virol. 2019;93(11):e00389–19. https://doi.org/10.1128/JVI.00389-19Test.; Marra RK, Kümmerle AE, Guedes GP. Barros CdS, Gomes RS, Cirne-Santos CC, Paixão ICN, Neves AP: quinolone-N-Acylhydrazone hybrids as potent Zika and chikungunya virus inhibitors. Bioorg Med Chem Lett. 2019;30(2):126881.; Xue L, Fang X, Hyman JM. Comparing the effectiveness of different strains of Wolbachia for controlling chikungunya, dengue fever, and zika. PLoS Negl Trop Dis. 2018;12(7):e0006666. https://doi.org/10.1371/journal.pntd.0006666Test.; Beltrán-Silva S, Chacón-Hernández S, Moreno-Palacios E, Pereyra-Molina J. Clinical and differential diagnosis: dengue, chikungunya and Zika. Revista Médica del Hospital General de México. 2018;81(3):146–53. https://doi.org/10.1016/j.hgmx.2016.09.011Test.; Chen H, Lao Z, Xu J, Li Z, Long H, Li D, et al. Antiviral activity of lycorine against Zika virus in vivo and in vitro. Virology. 2020;546:88–97. https://doi.org/10.1016/j.virol.2020.04.009Test.; Terstappen GC, Reggiani A. In silico research in drug discovery. Trends Pharmacol Sci. 2001;22(1):23–6. https://doi.org/10.1016/S0165-6147Test(00)01584-4.; Velásquez M, Drosos J, Gueto C, Márquez J, Vivas-Reyes R. Autodock-PM6 method to choose the better pose in molecular docking studies. Revista Colombiana de Química. 2013;42(1):101–24.; Plemper RK. Cell entry of enveloped viruses. Curr Opin Virol. 2011;1(2):92–100. https://doi.org/10.1016/j.coviro.2011.06.002Test.; https://hdl.handle.net/20.500.12494/43636Test; Monsalve-Escudero, L.M., Loaiza-Cano, V., Pájaro-González, Y. et al. (2021) Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement Med Ther 21, 216 (2021). https://doi.org/10.1186/s12906-021-03386-zTest

  3. 3
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: https://www.frontiersin.org/articles/10.3389/fmicb.2019.01982/fullTest; Front Microbiol.; https://hdl.handle.net/20.500.12494/15090Test; Quintero-Gil D, Rendon-Marin S, Martinez-Gutierrez M, Ruiz-Saenz J. Origin of canine distemper virus: consolidating evidence to understand potential zoonoses. Front Microbiol. 2019 Aug 28;10:1982.

  4. 4
    دورية أكاديمية

    مصطلحات موضوعية: distemper, evolution, measle, morbillivirus, Zoonotic disease

    وصف الملف: application/pdf

    العلاقة: https://www.frontiersin.org/articles/10.3389/fmicb.2019.01982/fullTest; Front Microbiol.; Abdullah N., Kelly J. T., Graham S. C., Birch J., Goncalves-Carneiro D., Mitchell T., et al. . (2018). Structure-guided identification of a nonhuman morbillivirus with zoonotic potential. J. Virol. 92:e01248–18. 10.1128/JVI.01248-18; Baker J. A., Sheffy B. E., Robson D. S., Gilmartin J. (1966). Response to measles virus by puppies with maternally transferred distemper antibodies. Cornell Vet. 56:588. [PubMed] [Google Scholar] Behura S. K., Severson D. W. (2013). Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. Biol. Rev. 88, 49–61. 10.1111/j.1469-185X.2012.00242.x; Bieringer M., Han J. W., Kendl S., Khosravi M., Plattet P., Schneider-Schaulies J. (2013). Experimental adaptation of wild-type canine distemper virus (CDV) to the human entry receptor CD150. PLoS ONE 8:e57488. 10.1371/journal.pone.0057488; Blancou J. (2004). Dog distemper: imported into Europe from South America? Hist. Med. Vet. 29, 35−41.; Brown A. L., Mccarthy R. E. (1974). Relationship between measles and canine distemper viruses determined by delayed type hypersensitivity reactions in dogs. Nature 248, 344–345. 10.1038/248344a0; Brown A. L., Vitamvas J. A., Merry D. L., Beckenhauer W. H. (1972). Immune response of pups to modified live-virus canine distemper-measles vaccine. Am. J. Vet. Res. 33, 1447–1456.; Christe K. L., Salyards G. W., Houghton S. D., Ardeshir A., Yee J. L. (2019). Modified dose efficacy trial of a canine distemper-measles vaccine for use in Rhesus Macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 58, 397–405. 10.30802/AALAS-JAALAS-18-000091; Cosby S. L., Weir L. (2018). Measles vaccination: threat from related veterinary viruses and need for continued vaccination post measles eradication. Hum. Vaccin. Immunother. 14, 229–233. 10.1080/21645515.2017.1403677; De Vries R. D., Duprex W. P., De Swart R. L. (2015). Morbillivirus infections: an introduction. Viruses 7, 699–706. 10.3390/v7020699; De Vries R. D., Ludlow M., Verburgh R. J., Van Amerongen G., Yuksel S., Nguyen D. T., et al. . (2014). Measles vaccination of nonhuman primates provides partial protection against infection with canine distemper virus. J. Virol. 88, 4423–4433. 10.1128/JVI.03676-13; Di Paola N., De Melo Freire C. C., De Andrade Zanotto P. M. (2018). Does adaptation to vertebrate codon usage relate to flavivirus emergence potential? PLoS ONE 13:e0191652. 10.1371/journal.pone.0191652; Drexler J. F., Corman V. M., Muller M. A., Maganga G. D., Vallo P., Binger T., et al. . (2012). Bats host major mammalian paramyxoviruses. Nat. Commun. 3:796. 10.1038/ncomms1796; Duque-valencia J., Sarute N., Olarte-Castillo X. A., Ruíz-Sáenz J. (2019). Evolution and interspecies transmission of canine distemper virus-an outlook of the diverse evolutionary landscapes of a multi-host virus. Viruses 11:E582. 10.3390/v11070582; Emerman M., Malik H. S. (2010). Paleovirology–modern consequences of ancient viruses. PLoS Biol. 8:e1000301. 10.1371/journal.pbio.1000301; Freire C. C. M., Palmisano G., Braconi C. T., Cugola F. R., Russo F. B., Beltrão-Braga P. C., et al. . (2018). NS1 codon usage adaptation to humans in pandemic Zika virus. Mem. Inst. Oswaldo Cruz 113:e170385. 10.1590/0074-02760170385; Furuse Y., Suzuki A., Oshitani H. (2010). Origin of measles virus: divergence from rinderpest virus between the 11th and 12th centuries. Virol. J. 7:52. 10.1186/1743-422X-7-52; Goni N., Iriarte A., Comas V., Sonora M., Moreno P., Moratorio G., et al. . (2012). Pandemic influenza A virus codon usage revisited: biases, adaptation and implications for vaccine strain development. Virol. J. 9:263. 10.1186/1743-422X-9-263; Haralambieva I. H., Kennedy R. B., Ovsyannikova I. G., Whitaker J. A., Poland G. A. (2015). Variability in humoral immunity to measles vaccine: new developments. Trends Mol. Med. 21, 789–801. 10.1016/j.molmed.2015.10.005; Holzmann H., Hengel H., Tenbusch M., Doerr H. W. (2016). Eradication of measles: remaining challenges. Med. Microbiol. Immunol. 205, 201–208. 10.1007/s00430-016-0451-4; https://hdl.handle.net/20.500.12494/15172Test; Quintero-Gil D, Rendon-Marin S, Martinez-Gutierrez M, Ruiz-Saenz J. Origin of canine distemper virus: consolidating evidence to understand potential zoonoses. Front Microbiol. 2019 Aug 28;10:1982. doi:10.3389/fmicb.2019.01982

  5. 5
    دورية أكاديمية

    المصدر: Abdullah N., Kelly J. T., Graham S. C., Birch J., Goncalves-Carneiro D., Mitchell T., et al. . (2018). Structure-guided identification of a nonhuman morbillivirus with zoonotic potential. J. Virol. 92:e01248–18. 10.1128/JVI.01248-18 ; Baker J. A., Sheffy B. E., Robson D. S., Gilmartin J. (1966). Response to measles virus by puppies with maternally transferred distemper antibodies. Cornell Vet. 56:588. [PubMed] [Google Scholar] Behura S. K., Severson D. W. (2013). Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. Biol. Rev. 88, 49–61. 10.1111/j.1469-185X.2012.00242.x ; Bieringer M., Han J. W., Kendl S., Khosravi M., Plattet ....

    مصطلحات موضوعية: distemper, evolution, measle, morbillivirus, Zoonotic disease

    وصف الملف: application/pdf

    العلاقة: Front Microbiol.; https://www.frontiersin.org/articles/10.3389/fmicb.2019.01982/fullTest; http://hdl.handle.net/20.500.12494/15172Test; Quintero-Gil D, Rendon-Marin S, Martinez-Gutierrez M, Ruiz-Saenz J. Origin of canine distemper virus: consolidating evidence to understand potential zoonoses. Front Microbiol. 2019 Aug 28;10:1982. doi:10.3389/fmicb.2019.01982

  6. 6
    دورية أكاديمية

    المصدر: 1. Nguyen TV, Le Van P, Le Huy C, Weintraub A. Diarrhea caused by rotavirus in children less than 5 years of age in Hanoi, Vietnam. J Clin Microbiol. 2004;42:5745-50. ; 2. Mokomane M, Kasvosve I, Melo E, Pernica JM, Goldfarb DM. The global problem of childhood diarrhoeal diseases: emerging strategies in prevention and management. Ther Adv Infect Dis. 2018;5:29-43. ; 3. GBD Diarrhoeal Diseases Collaborators. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis. 2017;17:909-48. ; 4. Crawford SE, Ramani ....

    وصف الملف: application/pdf

    العلاقة: Rev Inst Med Trop Sao Paulo; https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/31269110Test/; http://hdl.handle.net/20.500.12494/15181Test; Martinez-Gutierrez M, Arcila-Quiceno V, Trejos-Suarez J, Ruiz-Saenz J. (2019) Prevalence and molecular typing of rotavirus in children with acute diarrhoea in Northeastern Colombia. Rev Inst Med Trop Sao Paulo. 2019 Jul 1;61:e34. doi:10.1590/S1678-9946201961034.

  7. 7
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Front Microbiol.; https://www.frontiersin.org/articles/10.3389/fmicb.2019.01982/fullTest; http://hdl.handle.net/20.500.12494/15090Test; Quintero-Gil D, Rendon-Marin S, Martinez-Gutierrez M, Ruiz-Saenz J. Origin of canine distemper virus: consolidating evidence to understand potential zoonoses. Front Microbiol. 2019 Aug 28;10:1982.

  8. 8
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-019-2695-1Test; BMC Complement Altern Med.; 1. Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453–65.; 2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.; 3. OPS. Programa Regional de Dengue de la OPS. In: vol. Actualizado a la SE 43 del 2013: Organización Panamericana de la Salud; 2013.; 4. Salles TS, da Encarnação S-GT, de Alvarenga ESL, Guimarães-Ribeiro V, MDF d M, de Castro-Salles PF, dos Santos CR, do Amaral Melo AC, Soares MR, Ferreira DF. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasit Vectors. 2018;11(1):264.; 5. Organization WH, Research SPf, Diseases TiT, Diseases WHODoCoNT, Epidemic WHO, Alert P. Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva: World Health Organization; 2009.; 6. Simmons CP, Farrar JJ, van Vinh CN, Wills B. Dengue. N Engl J Med. 2012;366(15):1423–32.; 7. Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239(4839):476–81.; 8. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000;181(1):2–9.; 9. Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Ann Rev Microbiol. 1990;44(1):649–88.; 11. Bartenschlager R, Miller S. Molecular aspects of dengue virus replication; 2008.; 12. Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67(16):2773–86.; 13. Lin Y-L, Lei H-Y, Lin Y-S, Yeh T-M, Chen S-H, Liu H-S. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antivir Res. 2002;56(1):93–6.; 14. Takhampunya R, Ubol S, Houng H-S, Cameron CE, Padmanabhan R. Inhibition of dengue virus replication by mycophenolic acid and ribavirin. J Gen Virol. 2006;87(7):1947–52.; 15. Whitby K, Pierson TC, Geiss B, Lane K, Engle M, Zhou Y, Doms RW, Diamond MS. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol. 2005;79(14):8698–706.; 16. Martínez-Gutierrez M, Castellanos JE, Gallego-Gómez JC. Statins reduce dengue virus production via decreased virion assembly. Intervirology. 2011;54(4):202–16.; 17. Low JG, Ooi EE, Vasudevan SG. Current Status of Dengue Therapeutics Research and Development. J Infect Dis. 2017;215(suppl_2):S96–S102.; 18. Kaptein SJ, Neyts J. Towards antiviral therapies for treating dengue virus infections. Curr Opin Pharmacol. 2016;30:1–7.; 19. Lai J-H, Lin Y-L, Hsieh S-L. Pharmacological intervention for dengue virus infection. Biochem Pharmacol. 2017;129:14–25.; 20. Farrar J, Focks D, Gubler D, Barrera R, Guzman M, Simmons C, Kalayanarooj S, Lum L, McCall P, Lloyd L. Towards a global dengue research agenda. Tropical Med Int Health. 2007;12(6):695–9.; https://hdl.handle.net/20.500.12494/15306Test; Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 2019 Nov 6;19(1):298.

  9. 9
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/31269110Test/; Rev Inst Med Trop Sao Paulo; 1. Nguyen TV, Le Van P, Le Huy C, Weintraub A. Diarrhea caused by rotavirus in children less than 5 years of age in Hanoi, Vietnam. J Clin Microbiol. 2004;42:5745-50.; 2. Mokomane M, Kasvosve I, Melo E, Pernica JM, Goldfarb DM. The global problem of childhood diarrhoeal diseases: emerging strategies in prevention and management. Ther Adv Infect Dis. 2018;5:29-43.; 3. GBD Diarrhoeal Diseases Collaborators. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis. 2017;17:909-48.; 4. Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirus infection. Nat Rev Dis Primers. 2017;3:17083.; 5. Parashar UD, Gibson CJ, Bresse J, Glass RI. Rotavirus and severe childhood diarrhea. Emerg Infect Dis. 2006;12:304-6.; 6. World Health Organization. Meeting of the immunization Strategic Advisory Group of Experts, April 2009: conclusions and recommendations. Wkly Epidemiol Rec. 2009;84:220-36.; 7. Tate JE, Burton AH, Boschi-Pinto C, Parashar UD, World Health Organization-Coordinated Global Rotavirus Surveillance Network. Global, regional, and national estimates of rotavirus mortality in children; 8. Troeger C, Khalil IA, Rao PC, Cao S, Blacker BF, Ahmed T, et al. Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr. 2018;172:958-65.; 9. Bucardo F, Nordgren J. Impact of vaccination on the molecular epidemiology and evolution of group A rotaviruses in Latin America and factors affecting vaccine efficacy. Infect Genet Evol. 2015;34:106-13.; 11. Cáceres DC, Peláez D, Sierra N, Estrada E, Sánchez L. La carga de la enfermedad por rotavirus en niños menores de cinco años, Colombia, 2004. Rev Panam Salud Publica. 2006;20:9-21.; 12. Uribe Yepes MA, Rodríguez Villamizar LA, Gómez González YA, Olaya Gamboa LE, Rodríguez Santamaría SM. Aislamientos de patógenos comunes asociados con enfermedad diarreica aguda en menores de cinco años, Bucaramanga, Colombia. MedUNAB. 2009;12:72-9.; 13. World Health Organization. Manual of rotavirus detection and characterization methods. Geneva: WHO; 2009.; 14. Gouvea V, Glass RI, Woods P, Taniguchi K, Clark HF, Forrester B, et al. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol. 1990;28:276-82.; https://hdl.handle.net/20.500.12494/15181Test; Martinez-Gutierrez M, Arcila-Quiceno V, Trejos-Suarez J, Ruiz-Saenz J. (2019) Prevalence and molecular typing of rotavirus in children with acute diarrhoea in Northeastern Colombia. Rev Inst Med Trop Sao Paulo. 2019 Jul 1;61:e34. doi:10.1590/S1678-9946201961034.

  10. 10
    دورية أكاديمية

    المصدر: 1. Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453–65. ; 2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7. ; 3. OPS. Programa Regional de Dengue de la OPS. In: vol. Actualizado a la SE 43 del 2013: Organización Panamericana de la Salud; 2013. ; 4. Salles TS, da Encarnação S-GT, de Alvarenga ESL, Guimarães-Ribeiro V, MDF d M, de Castro-Salles PF, dos Santos CR, do Amaral Melo AC, Soares MR, Ferreira DF. History, epidemiology and diagnostics of dengue ....

    وصف الملف: application/pdf

    العلاقة: BMC Complement Altern Med.; https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-019-2695-1Test; http://hdl.handle.net/20.500.12494/15306Test; Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 2019 Nov 6;19(1):298.