دورية أكاديمية

Synthesis, characterization, and bacterial fouling-resistance properties of polyethylene glycol-grafted polyurethane elastomers

التفاصيل البيبلوغرافية
العنوان: Synthesis, characterization, and bacterial fouling-resistance properties of polyethylene glycol-grafted polyurethane elastomers
المؤلفون: Francolini I, Silvestro I, Di Lisio V, Martinelli A, Piozzi A
المساهمون: Francolini, I, Silvestro, I, Di Lisio, V, Martinelli, A, Piozzi, A
بيانات النشر: MDPI
سنة النشر: 2019
المجموعة: Sapienza Università di Roma: CINECA IRIS
مصطلحات موضوعية: segmented polyurethane, polyethylene glycol, microbial biofilm, antifouling material, medical device-related infection, wound dressings
الوصف: Despite advances in material sciences and clinical procedures for surgical hygiene, medical device implantation still exposes patients to the risk of developing local or systemic infections. The development of efficacious antimicrobial/antifouling materials may help with addressing such an issue. In this framework, polyethylene glycol (PEG)-grafted segmented polyurethanes were synthesized, physico-chemically characterized, and evaluated with respect to their bacterial fouling-resistance properties. PEG grafting significantly altered the polymer bulk and surface properties. Specifically, the PEG-grafted polyurethanes possessed a more pronounced hard/soft phase segregated microstructure, which contributed to improving the mechanical resistance of the polymers. The better flexibility of the soft phase in the PEG-functionalized polyurethanes compared to the pristine polyurethane (PU) was presumably also responsible for the higher ability of the polymer to uptake water. Additionally, dynamic contact angle measurements evidenced phenomena of surface reorganization of the PEG-functionalized polyurethanes, presumably involving the exposition of the polar PEG chains towards water. As a consequence, Staphylococcus epidermidis initial adhesion onto the surface of the PEG-functionalized PU was essentially inhibited. That was not true for the pristine PU. Biofilm formation was also strongly reduced
نوع الوثيقة: article in journal/newspaper
اللغة: English
العلاقة: info:eu-repo/semantics/altIdentifier/pmid/30823606; info:eu-repo/semantics/altIdentifier/wos/WOS:000460805400209; volume:20; numberofpages:16; journal:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES; http://hdl.handle.net/11573/1280176Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85064176772
DOI: 10.3390/ijms20041001
الإتاحة: https://doi.org/10.3390/ijms20041001Test
http://hdl.handle.net/11573/1280176Test
حقوق: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.18D4702F
قاعدة البيانات: BASE