يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"Desintoxicación"', وقت الاستعلام: 1.49s تنقيح النتائج
  1. 1
    دورية أكاديمية

    جغرافية الموضوع: Vol. 24, No. 18.

    وصف الملف: 1-22 p.; application/pdf

    العلاقة: https://www.mdpi.com/1420-3049/24/18/3315Test; Molecules; Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998; Meng,X.;Zhang,Z.;Li,X.Synergeticphotoelectrocatalyticreactorsforenvironmentalremediation: Areview. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 83–101. [CrossRef]; Colmenares, J.C.; Lisowski, P.; Łomot, D. A novel biomass-based support (Starbon) for TiO2 hybrid photocatalysts: A versatile green tool for water purification. RSC Adv. 2013, 3, 20186–20192. [CrossRef]; Yang, Z.; Liu, M.; Lin, C. Photocatalytic activity and scale-up effect in liquid-solid mini-fluidized bed reactor. Chem. Eng. J. 2016, 291, 254–268. [CrossRef]; Yao, X.; Zhang, Y.; Du, L.; Liu, J.; Yao, J. Review of the applications of microreactors. Renew. Sustain. Energy Rev. 2015, 47, 519–539. [CrossRef]; Colmenares, J.C.; Varma, R.S.; Nair, V. Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chem. Soc. Rev. 2017, 46, 6675–6686. [CrossRef] [PubMed]; Aljbour, S.; Tagawa, T.; Yamada, H. Ultrasound-assisted capillary microreactor for aqueous-organic multiphase reactions. J. Ind. Eng. Chem. 2009, 15, 829–834. [CrossRef]; Knowles, J.P.; Elliott, L.D.; Booker-Milburn, K.I. Flow photochemistry: Old light through new windows. Beilstein J. Org. Chem. 2012, 8, 2025–2052. [CrossRef]; Munirathinam, R.; Huskens, J.; Verboom, W. Supported catalysis in continuous-flow microreactors. Adv. Synth. Catal. 2015, 357, 1093–1123. [CrossRef]; Yue, J. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal. Today 2018, 308, 3–19. [CrossRef]; Dimov, S.; Gasenko, O. Catalytic combustion and steam reforming of hydrocarbons in microreactor. MATEC Web Conf. 2017, 115, 03011. [CrossRef]; Seeberger,P.H.Highlyefficientcontinuousflowreactionsusingsingletoxygenasa“green”reagent. Org.Lett. 2011, 13, 5008–5011.; Wang, X.; Cuny, G.D.; Noel, T. A mild, one-pot Stadler–Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Angew. Chem. Int. Ed. 2013, 52, 7860–7864. [CrossRef]; Carlos, J. Sonication-induced pathways in the synthesis of light-active catalysts for photocatalytic oxidation of organic contaminants. ChemSusChem 2014, 7, 1512–1527.; Tang, Z.R.; Yin, X.; Zhang, Y.; Xu, Y.J. One-pot, high-yield synthesis of one-dimensional ZnO nanorods with well-defined morphology as a highly selective photocatalyst. RSC Adv. 2013, 3, 5956–5965. [CrossRef]; Chatel, G.; Valange, S.; Behling, R.; Carlos, J. A combined approach using sonochemistry and photocatalysis: How to apply sonophotocatalysis for biomass conversion? ChemCatChem 2017, 9, 2615–2621. [CrossRef]; Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 2555–2567. [CrossRef]; Bora, M.; Shusteff, M. Efficient coupling of acoustic modes in microfluidic channel devices. Lab Chip 2015, 15, 3192–3202. [CrossRef]; John,J.J.;Kuhn,S.;Braeken,L.;VanGerven,T.Ultrasoundassistedliquid-liquidextractioninmicrochannels–A direct contact method. Chem. Eng. Process. Process Intensif. 2016, 102, 37–46. [CrossRef]; Thangavadivel, K.; Konagaya, M.; Okitsu, K.; Ashokkumar, M. Ultrasound-assisted degradation of methyl orange in a micro reactor. J. Environ. Chem. Eng. 2014, 2, 1841–1845. [CrossRef]; Sathishkumar, P.; Viswanathan, R. Review on the recent improvements in sonochemical and combined sonochemical oxidation processes—A powerful tool for destruction of environmental contaminants. Renew. Sustain. Energy Rev. 2016, 55, 426–454. [CrossRef]; Licklider, L.; Kuhr, W.G. Optimization of on-line peptide mapping by capillary zone electrophoresis. Anal. Chem. 1994, 66, 4400–4407. [CrossRef]; Rossi, D.; Jamshidi, R.; Sa, N.; Kuhn, S.; Gavriilidis, A.; Mazzei, L. Continuous-flow sonocrystallization in droplet-based micro fluidics. Cryst. Growth Des. 2015, 15, 5519–5529. [CrossRef]; Jiang, M.; Papageorgiou, C.D.; Waetzig, J.; Hardy, A.; Langston, M.; Braatz, R.D. Indirect ultrasonication in continuous slug-flow crystallization. Cryst. Growth Des. 2015, 15, 2486–2492. [CrossRef]; Rivas, D.F.; Castro-Hernández, E.; Villanueva Perales, A.L.; van der Meer, W. Evaluation method for process intensification alternatives. Chem. Eng. Process. Process Intensif. 2018, 123, 221–232. [CrossRef]; Wang, M.; Rajendran, V. Kinetics for dichlorocyclopropanation of 1,7-octadiene under the influence of ultrasound assisted phase-transfer catalysis conditions. J. Mol. Catal. A Chem. 2007, 273, 5–13. [CrossRef]; Hyun, S.; Hyang, J.; Cho, D. An analysis method for degradation kinetics of lowly concentrated PAH solutions under UV light and ultrasonication. J. Ind. Eng. Chem. 2009, 15, 157–162.; Thompson, L.H.; Doraiswamy, L.K. Sonochemistry: Science and engineering. Ind. Eng. Chem. Res. 1999, 38, 1215–1249. [CrossRef]; Laudadio, G.; Gemoets, H.P.L.; Hessel, V.; Noe, T. Flow synthesis of diaryliodonium triflates. J. Org. Chem. 2017, 82, 11735–11741. [CrossRef]; Joseph, J.; Kuhn, S.; Braeken, L.; Van Gerven, T. Ultrasound assisted liquid-liquid extraction with a novel interval-contact reactor. Chem. Eng. Process. Process Intensif. 2017, 113, 35–41.; Rizkin, B.A.; Popovic, F.G.; Hartman, R.L.; Rizkin, B.A.; Popovic, F.G.; Hartman, R.L. Spectroscopic microreactors for heterogeneous catalysis. J. Vac. Sci. Tehnol. A Vac. Surf. Films 2019, 37, 050801. [CrossRef]; Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113, 2550–2583. [CrossRef] [PubMed]; Sohrabi, S.; Keshavarz Moraveji, M.; Iranshahi, D. A review on the design and development of photocatalyst synthesis and application in microfluidic reactors: Challenges and opportunities. Rev. Chem. Eng. 2019, 0, 1–36. [CrossRef]; Aran, H.C.; Salamon, D.; Rijnaarts, T.; Mul, G.; Wessling, M.; Lammertink, R.G.H. Porous photocatalytic membrane microreactor (P2M2): A new reactor concept for photochemistry. J. Photochem. Photobiol. A Chem. 2011, 225, 36–41. [CrossRef]; Worz, O.; Jackel, K.P.; Richter, T.; Wolf, A. Microreactors–A new efficient tool forreactor development. Chem. Eng. Technol. 2001, 24, 138–142. [CrossRef]; Krivec, M.; Žagar, K.; Suhadolnik, L.; ˇCeh, M.; Dražic´, G. Highly efficient TiO2-based microreactor for photocatalytic applications. ACS Appl. Mater. Interfaces 2013, 5, 9088–9094. [CrossRef] [PubMed]; Eskandarloo,H.;Badiei,A.;Behnajady,M.A.;Ziarani,G.M.UV-LEDsassistedpreparationofsilverdeposited TiO2 catalyst bed inside microchannels as a high efficiency microphotoreactor for cleaning polluted water. Chem. Eng. J. 2015, 270, 158–167. [CrossRef]; Fernandez Rivas, D.; Kuhn, S. Synergy of microfluidics and ultrasound: Process intensification challenges and opportunities. Top. Curr. Chem. 2016, 374, 70. [CrossRef]; Fernandez Rivas, D.; Cintas, P.; Gardeniers, H.J.G.E. Merging microfluidics and sonochemistry: Towards greener and more efficient micro-sono-reactors. Chem. Commun. 2012, 48, 10935–10947. [CrossRef]; Wood, R.J.; Lee, J.; Bussemaker, M.J. A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions. Ultrason. Sonochem. 2017, 38, 351–370. [CrossRef]; Cintas, P. Ultrasound and green chemistry–Further comments. Ultrason. Sonochem. 2016, 28, 257–258. [CrossRef] [PubMed]; Dong,Z.;Zhao,S.;Zhang,Y.;Yao,C.;Chen,G.;Yuan,Q.Mixingandresidencetimedistributioninultrasonic microreactors. AIChE J. 2017, 63, 1404–1418. [CrossRef]; Wang, H.; Nakamura, H.; Uehara, M.; Miyazaki, M.; Maeda, H. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem. Commun. 2002, 2, 1462–1463. [CrossRef] [PubMed]; Chandrasekhar,D.;Borra,S.;Kapure,J.S.;Shivaji,G.S.;Srinivasulu,G.;Maurya,R.A.Visible-lightphotoredox catalysis: Direct synthesis of fused β-carbolines through an oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors. Org. Chem. Front. 2015, 2, 1308–1312. [CrossRef]; Matsushita, Y.; Ichimura, T.; Ohba, N.; Kumada, S.; Sakeda, K.; Suzuki, T.; Tanibata, H.; Murata, T. Recent progress on photoreactions in microreactors. Pure Appl. Chem. 2007, 79, 1959–1968. [CrossRef]; Oelgemoeller, M. Highlights of photochemical reactions in microflow reactors. Chem. Eng. Technol. 2012, 35, 1144–1152. [CrossRef]; Pandoli, O.; del Rosso, T.; Santos, V.M.; Rezende, R.D.S.; Marinkovic, B.A. Prototyping of photocatalitic microrreators and photodegradation tests of organic colors prototyping of photocatalytic microreactor and testing of photodegradation of organic. Quim. Nova 2015, 38, 859–863.; Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [CrossRef]; Wang, N.; Lei, L.; Zhang, X.M.; Tsang, Y.H.; Chen, Y.; Chan, H.L.W. A comparative study of preparation methods of nanoporous TiO2 films for microfluidic photocatalysis. Microelectron. Eng. 2011, 88, 2797–2799. [CrossRef]; Cambié, D.; Bottecchia, C.; Straathof, N.J.W.; Hessel, V.; Noël, T. Applications of continuous-flow photochemistryinorganicsynthesis,materialscience,andwatertreatment. Chem. Rev. 2016,116,10276–10341. [CrossRef]; Noël, T.; Naber, J.R.; Hartman, R.L.; Mcmullen, J.P.; Jensen, K.F.; Buchwald, S.L. Palladium-catalyzed aminationreactionsinflow: Overcomingthechallengesofcloggingviaacousticirradiation. Chem. Sci. 2011, 2, 287–290. [CrossRef]; Nair,V.;Colmenares,J.C.;Lisovytskiy,D.UltrasoundassistedZnOcoatinginamicroflowbasedphotoreactor for selective oxidation of benzyl alcohol to benzaldehyde. Green Chem. 2019, 21, 1241–1246. [CrossRef]; Aljbour, S.; Yamada, H.; Tagawa, T. Ultrasound-assisted phase transfer catalysis in a capillary microreactor. Chem. Eng. Process. Process Intensif. 2009, 48, 1167–1172. [CrossRef]; Hartman, R.L.; Naber, J.R.; Zaborenko, N.; Buchwald, S.L.; Jensen, K.F. Overcoming the challenges of solid bridgingandconstrictionduringPd-catalyzedC-Nbondformationinmicroreactorsabstract: Weinvestigate themechanismsthatgovernplugginginmicroreactors. Org. ProcessRes. Dev. 2010,14,1347–1357. [CrossRef]; Colmenares, J.C.; Ouyang, W.; Ojeda, M.; Kuna, E.; Chernyayeva, O.; Lisovytskiy, D.; De, S.; Luque, R.; Balu, A.M. Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol. Appl. Catal. B Environ. 2016, 183, 107–112. [CrossRef]; Pol, V.G.; Grisaru, H.; Gedanken, A. Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation. Langmuir 2005, 21, 3635–3640. [CrossRef]; Zhong, Z.; Mastai, Y.; Koltypin, Y.; Zhao, Y.; Gedanken, A. Sonochemical coating of nanosized nickel on alumina submicrospheres and the interaction between the nickel and nickel oxide with the substrate. Chem. Mater. 1999, 11, 2350–2359. [CrossRef]; Liu,S.;Guo,Z.;Qian,X.;Zhang,J.;Liu,J.;Lin,J.SonochemicaldepositionofultrafinemetallicPtnanoparticles on CdS for efficient photocatalytic hydrogen evolution. Sustain. Energy Fuels 2019, 3, 1048–1054. [CrossRef]; Qiu, P.; Park, B.; Choi, J.; Thokchom, B.; Pandit, A.B. A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. Ultrason. Sonochem. 2018, 45, 29–49. [CrossRef]; Yang, C.; Yeong, T.; Ching, J. An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant. Chem. Eng. J. 2017, 317, 586–612.; Yu, J.C.; Zhang, L.; Yu, J. Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New J. Chem. 2002, 26, 416–420. [CrossRef]; Das, S.; Srivastava, V.C. Microfluidic-based photocatalytic microreactor for environmental application: A review of fabrication substrates and techniques, and operating parameters. Photochem. Photobiol. Sci. 2016, 15, 714–730. [CrossRef]; Tao, S.; Yang, M.; Chen, H.; Ren, M.; Chen, G. Microfluidic synthesis of Ag @ Cu2O core-shell nanoparticles with enhanced photocatalytic activity. J. Colloid Interface Sci. 2017, 486, 16–26. [CrossRef]; Sachdev, S.; Maugi, R.; Kirk, C.; Zhou, Z.; Christie, S.D.R.; Platt, M. Synthesis and assembly of gold and iron oxide particles within an emulsion droplet; Facile production of core @ shell particles. Colloid Interface Sci. Commun. 2017, 16, 14–18. [CrossRef]; Jas, G.; Kirschning, A. Continuous flow techniques in organic synthesis. Chem. Eur. J. 2003, 9, 5708–5723. [CrossRef]; Baxendale,I.R.;Schou,S.C.;Sedelmeier,J.;Ley,S.V.Multi-stepsynthesisbyusingmodularflowreactors: The preparation of yne–ones and their use in heterocycle synthesis. Communication 2010, 16, 89–94. [CrossRef]; Mcmullen, J.P.; Jensen, K.F. Rapid determination of reaction kinetics with an automated microfluidic system. Org. Process Res. Dev. 2011, 15, 398–407. [CrossRef]; Kreutz,J.E.;Shukhaev,A.;Du,W.;Druskin,S.;Daugulis,O.;Ismagilov,R.F.Evolutionofcatalystsdirectedby genetic algorithms in a plug-based microfluidic device tested with oxidation of methane by oxygen. J. Am. Chem. Soc. 2010, 132, 128–3132. [CrossRef]; Pastre, J.C.; Browne, D.L.; Ley, S.V. Flow chemistry syntheses of natural products. Chem. Soc. Rev. 2013, 42, 8849–8869. [CrossRef]; Shchukin, D.G.; Sviridov, D.V. Photocatalytic processes in spatially confined micro- and nanoreactors. J. Photochem. Photobiol. C Photochem. Rev. 2006, 7, 23–39. [CrossRef]; Meng, X.; Zhang, Z.; Li, X. Ce Pt T; Elsevier Ireland Ltd.: Shannon, Ireland, 2015; ISBN 2227404701.; Lakerveld, R.; Sturm, G.S.J.; Stankiewicz, A.I.; Stefanidis, G.D. Integrated design of microwave and photocatalytic reactors. Where are we now? Curr. Opin. Chem. Eng. 2014, 5, 37–41. [CrossRef]; Saien,J.;Soleymani,A.R.Feasibilityofusingaslurryfallingfilmphoto-reactorforindividualandhybridized AOPs. J. Ind. Eng. Chem. 2012, 18, 1683–1688. [CrossRef]; Leblebici,M.E.;Stefanidis,G.D.;VanGerven,T.Comparisonofphotocatalyticspace-timeyieldsof12reactor designs for wastewater treatment. Chem. Eng. Process. Process Intensif. 2015, 97, 106–111. [CrossRef]; Heggo, D.; Ookawara, S. Multiphase photocatalytic microreactors. Chem. Eng. Sci. 2017, 169, 67–77. [CrossRef]; Shen, C.; Wang, Y.J.; Xu, J.H.; Luo, G.S. Glass capillaries with TiO2 supported on inner wall as microchannel reactors. Chem. Eng. J. 2015, 277, 48–55. [CrossRef]; Liu, M.; Zhu, X.; Chen, R.; Liao, Q.; Feng, H.; Li, L. Catalytic membrane microreactor with Pd/γ-Al2 O3 coated PDMS film modified by dopamine for hydrogenation of nitrobenzene. Chem. Eng. J. 2016, 301, 35–41. [CrossRef]; Stephan,B.;Ludovic,L.;Dominique,W.Modellingofafallingthinfilmdepositedphotocatalyticstepreactor for water purification: Pesticide treatment. Chem. Eng. J. 2011, 169, 216–225. [CrossRef]; Chen, Y.; Dionysiou, D.D. Effect of calcination temperature on the photocatalytic activity and adhesion of TiO2 films prepared by the P-25 powder-modified sol–gel method. J. Mol. Catal. A Chem. 2006, 244, 73–82. [CrossRef]; Charles, G.; Roques-Carmes, T.; Becheikh, N.; Falk, L.; Commenge, J.; Corbel, S. Determination of kinetic constants of a photocatalytic reaction in micro-channel reactors in the presence of mass-transfer limitation and axial dispersion. J. Photochem. Photobiol. A Chem. 2011, 223, 202–211. [CrossRef]; Corbel, S.; Becheikh, N.; Roques-Carmes, T.; Zahraa, O. Mass transfer measurements and modeling in a microchannel photocatalytic reactor. Chem. Eng. Res. Des. 2013, 92, 657–662. [CrossRef]; Oelgemöller, M.; Shvydkiv, O. Recent advances in microflow photochemistry. Molecules 2011, 16, 7522–7550. [CrossRef]; Ramos, B.; Ookawara, S.; Matsushita, Y.; Yoshikawa, S. Low-cost polymeric photocatalytic microreactors: Catalyst deposition and performance for phenol degradation. J. Environ. Chem. Eng. 2014, 2, 1487–1494. [CrossRef]; Padoin,N.;Andrade,L.;Angelo,J.;Mendes,A.;Moreira,R.D.F.P.M.;Soares,C.Intensificationofphotocatalytic pollutant abatement in microchannel reactor using TiO2 and TiO2-graphene. AIChE J. 2016, 62, 2794–2802. [CrossRef]; Liao, W.; Wang, N.; Wang, T.; Xu, J.; Han, X. Biomimetic microchannels of planar reactors for optimized photocatalytic efficiency of water purification. Biomicrofluidics 2016, 10, 014123. [CrossRef]; Wilms, D.; Klos, J.; Frey, H. Trends in polymer science microstructured reactors for polymer synthesis: A renaissance of continuous flow processes for tailor-made macromolecules? Macromol. Chem. Phys. 2008, 209, 343–356. [CrossRef]; Kumar,M.;Rao,N.;Khandekar,S.;Kunzru,D.Distributedhydrogenproductionfromethanolinamicrofuel processor: Issues and challenges. Renew. Sustain. Energy Rev. 2011, 15, 524–533.; Hornung, C.H.; Hallmark, B.; Baumann, M.; Baxendale, I.R.; Ley, S.V.; Hester, P.; Clayton, P.; MacKley, M.R. Multiple microcapillary reactor for organic synthesis. Ind. Eng. Chem. Res. 2010, 49, 4576–4582. [CrossRef]; Davis, G. Microfluidics: Its impact on drug discovery. Innov. Pharm. Technol. 2008, 25, 24–27.; Microfluidics, D.; Song, H.; Chen, D.L.; Ismagilov, R.F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 2006, 45, 7336–7356.; Mcmullen, J.P.; Stone, M.T.; Buchwald, S.L.; Jensen, K.F. An integrated microreactor system for self-optimization of a heck reaction: From micro- to mesoscale flow systems. Angew. Chem. Int. Ed. 2010, 49, 7076–7080. [CrossRef]; Naber, J.R.; Buchwald, S.L. Packed-bed reactors for continuous-flow C-N cross-coupling. Angew. Chem. Int. Ed. 2010, 49, 9469–9474. [CrossRef]; Okawa, A.; Yoshida, R.; Isozaki, T.; Shigesato, Y.; Matsushita, Y.; Suzuki, T. Photocatalytic oxidation of benzene in a microreactor with immobilized TiO2 thin films deposited by sputtering. Catal. Commun. 2017, 100, 1–4. [CrossRef]; Hawkins, A.R.; Schmidt, H. Handbook of Optofluidics; Taylor and Francis Group: Boca Raton, FL, USA, 2010.; Ohering, M. Materials Science of Thin Films, Deposition and Structure; Academic Press: San Diego, CA, USA, 2002.; Visan, A.; Rafieian, D.; Ogieglo, W.; Lammertink, R.G.H. Modeling intrinsic kinetics in immobilized photocatalytic microreactors. Appl. Catal. B Environ. 2014, 150, 93–100. [CrossRef]; Pierson, H.O. Handbook of Chemical Vapor Deposition: Technology, and Applications; Noyes Publications: Norwich, NY, USA, 2001.; Grosso, D.; Marie, P. How to exploit the full potential of the dip-coating process to better control film formation. J. Mater. Chem. 2011, 21, 17033–17038. [CrossRef]; Taylor,P.;Edler,K.J.;Roser,S.J.Growthandcharacterizationofmesoporoussilicafilms. Int. Rev. Phys. Chem. 2001, 20, 387–466.; Meng,Z.;Zhang,X.;Qin,J.Ahighefficiencymicrofluidic-basedphotocatalyticmicroreactorusingelectrospun nanofibrous TiO2 as a photocatalyst. Nanoscale 2013, 4687–4690. [CrossRef]; Ra, D.; Driessen, R.T.; Ogieglo, W.; Lammertink, R.G.H. Intrinsic photocatalytic assessment of reactively sputtered TiO2 films. ACS Appl. Mater. Interfaces 2015, 7, 8727–8732.; Piveteau, L.; Gasser, B.; Schlapbach, L. Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application. Biomaterials 2000, 21, 2193–2201. [CrossRef]; Manivannan, A.; Spataru, N.; Arihara, K.; Fujishima, A. Electrochemical deposition of titanium oxide on boron-doped diamond electrodes. Electrochem. Solid Lett. 2005, 8, 138–140. [CrossRef]; Chein, R.; Chen, L.; Chen, Y.; Chung, J.N. Heat transfer effects on the methanol-steam reforming with partially filled catalyst layers. Int. J. Hydrog. Energy 2009, 34, 5398–5408. [CrossRef]; Lopez-Orozco, S.; Inayat, A.; Schwab, A.; Selvam, T.; Schwieger, W. Zeolitic materials with hierarchical porous structures. Adv. Mater. 2011, 23, 2602–2615. [CrossRef]; Tanimu, A.; Jaenicke, S.; Alhooshani, K. Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications. Chem. Eng. J. 2017, 327, 792–821. [CrossRef]; Abramovic, B.F.; Šojic, D.V.; Krstic, J.B.; Finc, N.L.; Banic, N.D.; Boc, I.P. Efficiency of neonicotinoids photocatalytic degradation by using annular slurry reactor. Chem. Eng. J. 2016, 286, 184–190.; Nakamura, H.; Li, X.; Wang, H.; Uehara, M.; Miyazaki, M.; Shimizu, H.; Maeda, H. A simple method of self assembled nano-particles deposition on the micro-capillary inner walls and the reactor application for photo-catalytic and enzyme reactions. Chem. Eng. J. 2004, 101, 261–268. [CrossRef]; Rebrov, E.V.; Berenguer-Murcia, A.; Skelton, H.E.; Johnson, B.F.G.; Wheatley, A.E.H.; Schouten, J.C. Capillary microreactors wall-coated with mesoporous titania thin film catalyst supports. Lab Chip 2009, 9, 503–506. [CrossRef]; Li, L.; Tang, D.; Song, Y.; Jiang, B. Dual-film optofluidic microreactor with enhanced light-harvesting for photocatalytic applications. Chem. Eng. J. 2018, 339, 71–77. [CrossRef]; Suhadolnik, L.; Krivec, M.; Kristina, Ž.; Dra, G.; Ceh, M. A TiO2-nanotubes-based coil-type microreactor for highlyefficientphotoelectrocatalyticdegradationoforganiccompounds. J.Ind. Eng. Chem. 2017,47,384–390. [CrossRef]; Colmenares, J.C.; Nair, V.; Kuna, E.; Łomot, D. Development of photocatalyst coated fluoropolymer based microreactor using ultrasound for water remediation. Ultrason. Sonochem. 2018, 41, 297–302. [CrossRef]; Colmenares, J.C.; Kuna, E.; Lomot, D. Method and the Device for Deposition of Nanoparticles on the Inner Walls of a Polymer Capillary, Using Ultrasonic Waves. Patent PL 231485, 7 November 2018.; Dragone, V.; Sans, V.; Rosnes, M.H.; Kitson, P.J.; Cronin, L. 3D-printed devices for continuous-flow organic chemistry. Beilstein J. Org. Chem. 2013, 9, 951–959. [CrossRef]; Corrêa, A.G.; Zuin, V.G.; Ferreira, V.F.; Vazquez, P.G. Green chemistry in Brazil. Pure Appl. Chem. 2013, 85, 1643–1653. [CrossRef]; Wu, K.; Kuhn, S. Strategies for solids handling in microreactors. Chim. Oggi 2014, 32, 62–67.; Cassano, A.E.; Alfano, O.M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal. Today 2000, 58, 167–197. [CrossRef]; Kar, A.; Smith, Y.R. Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ. Sci. Technol. 2009, 43, 3260–3265. [CrossRef]; Colina Marquez, J.; Machuca-Martinez, F.; Puma, G.L. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications. Environ. Sci. Technol. 2010, 44, 5112–5120. [CrossRef]; https://doi.org/10.3390/molecules24183315Test; https://hdl.handle.net/20.500.12494/17439Test; Rashmi Pradhan, S., Colmenares-Quintero, RF y Colmenares Quintero, JC (2019). Diseño de microfluctores para fotocatálisis mediante sonoquímica: un artículo de revisión sistemática. Moléculas , 24 (18), 3315. doi:10.3390 / moléculas24183315

  2. 2
    دورية أكاديمية

    المصدر: Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998 ; Meng,X.;Zhang,Z.;Li,X.Synergeticphotoelectrocatalyticreactorsforenvironmentalremediation: Areview. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 83–101. [CrossRef] ; Colmenares, J.C.; Lisowski, P.; Łomot, D. A novel biomass-based support (Starbon) for TiO2 hybrid photocatalysts: A versatile green tool for water purification. RSC Adv. 2013, 3, 20186–20192. [CrossRef] ; Yang, Z.; Liu, M.; Lin, C. Photocatalytic activity and scale-up effect in liquid-solid mini-fluidized bed reactor. Chem. Eng. J. 2016, 291, 254–268. [CrossRef] ; Yao, X.; Zhang, Y.; Du, L.; Liu, J.; Yao, J. Review of the applications of ....

    جغرافية الموضوع: Vol. 24, No. 18.

    وصف الملف: 1-22 p.; application/pdf

    العلاقة: Molecules; https://www.mdpi.com/1420-3049/24/18/3315Test; https://doi.org/10.3390/molecules24183315Test; http://hdl.handle.net/20.500.12494/17439Test; Rashmi Pradhan, S., Colmenares-Quintero, RF y Colmenares Quintero, JC (2019). Diseño de microfluctores para fotocatálisis mediante sonoquímica: un artículo de revisión sistemática. Moléculas , 24 (18), 3315. doi:10.3390 / moléculas24183315