A quantitative comparison between a low order model and a 3D FEM code for the study of thermoacoustic combustion instabilities

التفاصيل البيبلوغرافية
العنوان: A quantitative comparison between a low order model and a 3D FEM code for the study of thermoacoustic combustion instabilities
المؤلفون: Anai¨s Guaus, Sergio Mario Camporeale, Ezio Cosatto, Julien Favier, Giulio Mori, Matteo Bargiacchi, Alessandro Bottaro, Giovanni Campa
المساهمون: Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Constant, Eddy, Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
المصدر: Proceedings of the ASME Turbo Expo
Proceedings of the ASME Turbo Expo, Jun 2011, Vancouver, Canada
بيانات النشر: HAL CCSD, 2011.
سنة النشر: 2011
مصطلحات موضوعية: Engineering, Helmholtz equation, business.industry, Turbulence, 020209 energy, Mechanical engineering, 02 engineering and technology, Combustion, 7. Clean energy, 01 natural sciences, Instability, Finite element method, 010305 fluids & plasmas, Frequency domain, 0103 physical sciences, 0202 electrical engineering, electronic engineering, information engineering, [PHYS.MECA.MEFL] Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph], [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph], business, Eigenvalues and eigenvectors, ComputingMilieux_MISCELLANEOUS, Large eddy simulation
الوصف: The study of thermoacoustic combustion instabilities has an important role for safety operation in modern gas turbines equipped with lean premixed dry low emission combustion systems. Gas turbine manufacturers often adopt simulation tools based on low order models for predicting the phenomenon of humming. These simulation codes provide fast responses and good physical insight, but only one-dimensional or two-dimensional simplified schemes can be generally examined. The finite element method can overcome such limitations, because it allows to examine three-dimensional geometries and to search the complex eigenfrequencies of the system. Large Eddy Simulation (LES) techniques are proposed in order to investigate the instability phenomenon, matching pressure fluctuations with turbulent combustion phenomena to study thermoacoustic combustion oscillations, even if they require large numerical resources. The finite element approach solves numerically the Helmholtz equation problem converted in a complex eigenvalue problem in the frequency domain. Complex eigenvalues of the system allow us to identify the complex eigenfrequencies of the combustion system analyzed, so that we can have a valid indication of the frequencies at which thermoacoustic instabilities are expected and of the growth rate of the pressure oscillations at the onset of instability. Through the collaboration among Ansaldo Energia, University of Genoa and Polytechnic University of Bari, a quantitative comparison between a low order model, called LOMTI, and the three-dimensional finite element method has been examined, in order to exploit the advantages of both the methodologies.Copyright © 2011 by ASME
اللغة: English
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3231890b16ef89101131576a60a666efTest
https://hal.archives-ouvertes.fr/hal-01308966Test
حقوق: CLOSED
رقم الانضمام: edsair.doi.dedup.....3231890b16ef89101131576a60a666ef
قاعدة البيانات: OpenAIRE