دورية أكاديمية

The Protective Effect of Vanadium on Cognitive Impairment and the Neuropathology of Alzheimer’s Disease in APPSwe/PS1dE9 Mice

التفاصيل البيبلوغرافية
العنوان: The Protective Effect of Vanadium on Cognitive Impairment and the Neuropathology of Alzheimer’s Disease in APPSwe/PS1dE9 Mice
المؤلفون: Zhijun He, Shuangxue Han, Huazhang Zhu, Xia Hu, Xiaoqian Li, Chaofan Hou, Chong Wu, Qingguo Xie, Nan Li, Xiubo Du, Jiazuan Ni, Qiong Liu
المصدر: Frontiers in Molecular Neuroscience, Vol 13 (2020)
بيانات النشر: Frontiers Media S.A., 2020.
سنة النشر: 2020
المجموعة: LCC:Neurosciences. Biological psychiatry. Neuropsychiatry
مصطلحات موضوعية: Alzheimer’s disease, amyloid beta (Aβ), vanadium, bis(ethylmaltolato) oxidovanadium (IV) (BEOV), peroxisome proliferator-activated receptor gamma (PPARγ), protein tyrosine phosphatase-1B (PTP1B), Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
الوصف: Alzheimer’s disease (AD) is a widely distributed neurodegenerative disease characterized clinically by cognitive deficits and pathologically by formation of amyloid-β (Aβ) plaque and neurofibrillary tangles (NFTs) in the brain. Vanadium is a biological trace element that has a function to mimic insulin for diabetes. Bis(ethylmaltolato) oxidovanadium (IV) (BEOV) has been reported to have a hypoglycemic property, but its effect on AD remains unclear. In this study, BEOV was supplemented at doses of 0.2 and 1.0 mmol/L to the AD model mice APPSwe/PS1dE9 for 3 months. The results showed that BEOV substantially ameliorated glucose metabolic disorder as well as synaptic and behavioral deficits of the AD mice. Further investigation revealed that BEOV significantly reduced Aβ generation by increasing the expression of peroxisome proliferator-activated receptor gamma and insulin-degrading enzyme and by decreasing β-secretase 1 in the hippocampus and cortex of AD mice. BEOV also reduced tau hyperphosphorylation by inhibiting protein tyrosine phosphatase-1B and regulating the pathway of insulin receptor/insulin receptor substrate-1/protein kinase B/glycogen synthase kinase 3 beta. Furthermore, BEOV could enhance autophagolysosomal fusion and restore autophagic flux to increase the clearance of Aβ deposits and phosphorylated tau in the brains of AD mice. Collectively, the present study provides solid data for revealing the function and mechanism of BEOV on AD pathology.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1662-5099
العلاقة: https://www.frontiersin.org/article/10.3389/fnmol.2020.00021/fullTest; https://doaj.org/toc/1662-5099Test
DOI: 10.3389/fnmol.2020.00021
الوصول الحر: https://doaj.org/article/dc737b0862384e938737f261ca0ce92bTest
رقم الانضمام: edsdoj.737b0862384e938737f261ca0ce92b
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:16625099
DOI:10.3389/fnmol.2020.00021