يعرض 1 - 10 نتائج من 217 نتيجة بحث عن '"Yun Zhou"', وقت الاستعلام: 0.69s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المؤلفون: Yun Zhou, Jian Qiao, Nan Yan, Liyan Dai, Yuehu Pu

    المصدر: Frontiers in Physics, Vol 12 (2024)

    الوصف: Medical accelerators have been widely used in tumor radiation therapy. Accurate isocenter coincidence between treatment beams and imaging systems is critical for image-guided radiation therapy (IGRT). We propose a method utilizing a phantom with marker spheres to detect the Nine Degrees of Freedom (9-DOF) in the system’s geometric model to assess isocenter coincidence between the treatment beams and the kV cone-beam computed tomography (CBCT). The phantom was initially aligned with the accelerator. Subsequently, the projections of the treatment and CBCT beams’ were acquired separately with full gantry rotation. By analyzing the marker spheres’ position in both the treatment beam and CBCT beam projections, the 9-DOF parameters were calculated. A comparison with a Winston-Lutz-based system was performed. Then, the analysis revealed imprecise circular trajectories with noticeable random deviations in the rotations of both the treatment beams and CBCT. The isocenter deviations for the treatment beams and CBCT were 0.18 mm (X), −0.49 mm (Y), and −0.35 mm (Z) after trajectories fitting, respectively. The rotational planes of the two systems exhibited a pinch angle of 0.0235°. This proposed method offers a quantitative assessment of the geometric pose of the source and the detector panel, and the isocenter coincidence of the treatment beams and imaging systems of an accelerator at each gantry angle.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: Frontiers in Bioengineering and Biotechnology, Vol 12 (2024)

    الوصف: Skin wound healing is a complex and tightly regulated process. The frequent occurrence and reoccurrence of acute and chronic wounds cause significant skin damage to patients and impose socioeconomic burdens. Therefore, there is an urgent requirement to promote interdisciplinary development in the fields of material science and medicine to investigate novel mechanisms for wound healing. Cerium oxide nanoparticles (CeO2 NPs) are a type of nanomaterials that possess distinct properties and have broad application prospects. They are recognized for their capabilities in enhancing wound closure, minimizing scarring, mitigating inflammation, and exerting antibacterial effects, which has led to their prominence in wound care research. In this paper, the distinctive physicochemical properties of CeO2 NPs and their most recent synthesis approaches are discussed. It further investigates the therapeutic mechanisms of CeO2 NPs in the process of wound healing. Following that, this review critically examines previous studies focusing on the effects of CeO2 NPs on wound healing. Finally, it suggests the potential application of cerium oxide as an innovative nanomaterial in diverse fields and discusses its prospects for future advancements.

    وصف الملف: electronic resource

  3. 3
    دورية أكاديمية

    المصدر: Frontiers in Microbiology, Vol 15 (2024)

    الوصف: The cultivation system requires that the approach providing biomass for all types of metabolic analysis is of excellent quality and reliability. This study was conducted to enhance the efficiency and yield of antifungal substance (AFS) production in Streptomyces yanglinensis 3–10 by optimizing operation conditions of aeration, agitation, carbon source, and incubation time in a fermenter. Dissolved oxygen (DO) and pH were found to play significant roles in AFS production. The optimum pH for the production of AFS in S. yanglinensis 3–10 was found to be 6.5. As the AFS synthesis is generally thought to be an aerobic process, DO plays a significant role. The synthesis of bioactive compounds can vary depending on how DO affects growth rate. This study validates that the high growth rate and antifungal activity required a minimum DO concentration of approximately 20% saturation. The DO supply in a fermenter can be raised once agitation and aeration have been adjusted. Consequently, DO can stimulate the development of bacteria and enzyme production. A large shearing effect could result from the extreme agitation, harming the cell and deactivating its products. The highest inhibition zone diameter (IZD) was obtained with 3% starch, making starch a more efficient carbon source than glucose. Temperature is another important factor affecting AFS production. The needed fermentation time would increase and AFS production would be reduced by the too-low operating temperature. Furthermore, large-scale fermenters are challenging to manage at temperatures that are far below from room temperature. According to this research, 28°C is the ideal temperature for the fermentation of S. yanglinensis 3–10. The current study deals with the optimization of submerged batch fermentation involving the modification of operation conditions to effectively enhance the efficiency and yield of AFS production in S. yanglinensis 3–10.

    وصف الملف: electronic resource

  4. 4
    دورية أكاديمية

    المصدر: Frontiers in Immunology, Vol 15 (2024)

    الوصف: This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية

    المصدر: Frontiers in Oncology, Vol 13 (2023)

    الوصف: ObjectiveExisting evidence suggests that palliative care (PC) is highly underutilized in metastatic gynecologic cancer (mGCa). This study aims to explore temporal trends and predictors for inpatient PC referral in mGCa patients who received specific critical care therapies (CCT).MethodsThe National Inpatient Sample from 2003 to 2015 was used to identify mGCa patients receiving CCT. Basic characteristics were compared between patients with and without PC. Annual percentage change (APC) was estimated to reflect the temporal trend in the entire cohort and subgroups. Multivariable logistic regression was employed to explore potential predictors of inpatient PC referral.ResultsIn total, 122,981 mGCa patients were identified, of whom 10,380 received CCT. Among these, 1,208 (11.64%) received inpatient PC. Overall, the rate of PC referral increased from 1.81% in 2003 to 26.30% in 2015 (APC: 29.08%). A higher increase in PC usage was found in white patients (APC: 30.81%), medium-sized hospitals (APC: 31.43%), the Midwest region (APC: 33.84%), and among patients with ovarian cancer (APC: 31.35%). Multivariable analysis suggested that medium bedsize, large bedsize, Midwest region, West region, uterine cancer and cervical cancer were related to increased PC use, while metastatic sites from lymph nodes and genital organs were related to lower PC referral.ConclusionFurther studies are warranted to better illustrate the barriers for PC and finally improve the delivery of optimal end-of-life care for mGCa patients who receive inpatient CCT, especially for those diagnosed with ovarian cancer or admitted to small scale and Northeast hospitals.

    وصف الملف: electronic resource

  6. 6
    دورية أكاديمية

    المصدر: Frontiers in Neurology, Vol 14 (2023)

    الوصف: BackgroundWhite matter hyperintensity (WMH) is often described in acute lacunar stroke (ALS) patients. However, the specific relationship between regional WMH volume and persistent cognitive impairment remains unclear.MethodsWe enrolled patients with ALS who were hospitalized at the First Affiliated Hospital of Soochow University between January 2020 and November 2022. All patients were assessed for global cognitive function using the Montreal Cognitive Assessment (MoCA) scale at 14 ± 2 days and 6 months after the onset of ALS. Manifestations of chronic cerebral small vessel disease (CSVD) were assessed via MRI scan. The distributions of regional WMH were segmented, and their relationship with cognitive impairment was evaluated.ResultsA total of 129 patients were enrolled. Baseline frontal WMH volume (OR = 1.18, P = 0.04) was an independent risk factor for long-term cognitive impairment after ALS. Furthermore, the presence of WMH at the genu of the corpus callosum (GCC) at baseline (OR = 3.1, P = 0.033) was strongly associated with persistent cognitive decline. Multivariable logistic regression analysis showed that depression (OR = 6.252, P = 0.029), NIHSS score (OR = 1.24, P = 0.011), and albumin at admission (OR = 0.841, P = 0.032) were also important determinants of long-term cognitive impairment after ALS.ConclusionsOur study found that WMH, especially frontal WMH volume and the presence of WMH at the GCC at baseline, independently contributed to long-term cognitive decline in ALS patients. This study provides new evidence of the clinical relationship between regional WMH volume and cognitive impairment in ALS patients.

    وصف الملف: electronic resource

  7. 7
    دورية أكاديمية

    المصدر: Frontiers in Microbiology, Vol 14 (2023)

    الوصف: IntroductionThe partial substitution of chemical fertilizer with organic manure takes on a critical significance to enhancing soil quality and boosting sustainable agricultural development. However, rare research has studied the effects of partial substitution of chemical fertilizer with organic manure on soil bacterial community diversity and enzyme activity in maize field in the mountain red soil region of Yunnan.MethodsIn this study, four treatments were set up in which chemical fertilizer (the application rates of N, P2O5 and K2O were 240, 75 and 75 kg·ha−1, respectively) was substituted by 10% (M10), 20% (M20), 30% (M30) and 40% (M40) of organic manure with equal nitrogen, as well as two control treatments of single application of chemical fertilizer (M0) and no fertilization (CK). The maize (Zea mays L.) crop was sown as a test crop in May 2018. The effects of partial substitution of chemical fertilizer with organic manure on soil physicochemical properties, soil bacterial community diversity and enzyme activity were studied.ResultsThe activities of Cellulase (CBH), Invertase (INV) and β-glucosidase (BG) increased with the increase of organic manure substitution ratio. The activities of β-1,4-N-acetylglucosaminidase (NAG), Urease (URE), and leucine aminopeptidase (LAP) also had the same trend, but the highest activities were 159.92 mg·g−1·h−1, 66.82 mg·g−1·h−1 and 143.90 mg·g−1·h−1 at 30% substitution ratio. Compared with CK and M0 treatments, Shannon index increased notably by 82.91%–116.74% and 92.42%–128.01%, respectively, at the organic manure substitution ratio ranging from 10% to 40%. Chao1 and ACE index increased significantly at the organic manure substitution ratio ranging from 10% to 30%. Proteobacteria was the dominant phylum in all treatments, the relative abundance of Proteobacteria decreased as the organic manure substitution ratio increased. Redundancy analysis showed that microbial biomass C was the main factor affecting the bacterial community composition under partial replacement of chemical fertilizer treatment, while Actinobacteria was the main factor affecting the enzyme activity. In addition, the maize yield of M30 and M40 treatments was significantly higher than that of CK and M0-M20 treatments, and the yield of M30 treatment was the highest, reaching 7652.89 kg·ha−1.ConclusionTherefore, the partial substitution of chemical fertilizer with organic manure can improve soil biological characteristics, while increasing bacterial community diversity and soil enzyme activity. Therefore, a thirty percent organic manure substitution was determined as the optimal substitution ratio for maize farmland in the mountain red soil area of Yunnan, China.

    وصف الملف: electronic resource

  8. 8
    دورية أكاديمية

    المصدر: Frontiers in Bioinformatics, Vol 3 (2023)

    الوصف: Introduction: Existing large-scale preclinical cancer drug response databases provide us with a great opportunity to identify and predict potentially effective drugs to combat cancers. Deep learning models built on these databases have been developed and applied to tackle the cancer drug-response prediction task. Their prediction has been demonstrated to significantly outperform traditional machine learning methods. However, due to the “black box” characteristic, biologically faithful explanations are hardly derived from these deep learning models. Interpretable deep learning models that rely on visible neural networks (VNNs) have been proposed to provide biological justification for the predicted outcomes. However, their performance does not meet the expectation to be applied in clinical practice.Methods: In this paper, we develop an XMR model, an eXplainable Multimodal neural network for drug Response prediction. XMR is a new compact multimodal neural network consisting of two sub-networks: a visible neural network for learning genomic features and a graph neural network (GNN) for learning drugs’ structural features. Both sub-networks are integrated into a multimodal fusion layer to model the drug response for the given gene mutations and the drug’s molecular structures. Furthermore, a pruning approach is applied to provide better interpretations of the XMR model. We use five pathway hierarchies (cell cycle, DNA repair, diseases, signal transduction, and metabolism), which are obtained from the Reactome Pathway Database, as the architecture of VNN for our XMR model to predict drug responses of triple negative breast cancer.Results: We find that our model outperforms other state-of-the-art interpretable deep learning models in terms of predictive performance. In addition, our model can provide biological insights into explaining drug responses for triple-negative breast cancer.Discussion: Overall, combining both VNN and GNN in a multimodal fusion layer, XMR captures key genomic and molecular features and offers reasonable interpretability in biology, thereby better predicting drug responses in cancer patients. Our model would also benefit personalized cancer therapy in the future.

    وصف الملف: electronic resource

  9. 9
    دورية أكاديمية

    المصدر: Frontiers in Energy Research, Vol 11 (2023)

    الوصف: Under the “carbon peaking and carbon neutrality” development strategy, in order to suppress load fluctuations and promote renewable energy consumptions in the regional integrated energy system involving concentrating solar power stations, a double-layer optimization model based on the improved non-dominated sorting genetic algorithm-II (NSGA-II) and mixed integer linear programming (MILP) is proposed. The upper layer completes the capacity configuration process based on multiple objectives to minimize the annual planning cost and the net emission of pollutants. The lower layer is designed to minimize the annual operating cost and optimize the output of the devices and the load curves through the participation of the integrated demand response process for flexible loads and the whole process of carbon emission including carbon capture, carbon utilization, and carbon trading mechanisms to obtain the best operating plan. The final results indicate that the participation of concentrating solar power stations can improve the level of coordinated optimization, and the improved NSGA-II is stronger than the conventional one in convergence ability. Besides, considering the whole process of carbon emission and integrated demand response is capable of decreasing the annual operating cost and net carbon emission to improve the economy and environmental protection of the system significantly.

    وصف الملف: electronic resource

  10. 10
    دورية أكاديمية

    المصدر: Frontiers in Cell and Developmental Biology, Vol 11 (2023)

    الوصف: Introduction: As a congenital and genetically related disease, many single nucleotide polymorphisms (SNPs) have been reported to be associated with the risk of HSCR. Our previous research showed that SNP rs2439302 (NRG1) interacted with rs2435357 (RET) to increase the risk of HSCR development. However, the underlying molecular mechanism is still not well understood.Methods: SNP rs2439302 (NRG1) and rs2435357 (RET) were genotyped in 470 HSCR cases. The expression of NRG1 and RET was investigated in the colon of HSCR patients. Knockdown of the NRG1 and RET homologs was performed in zebrafish to investigate their synergistic effect on ENS development. The effect of SNP rs2439302 and rs2435357 polymorphism on neuron proliferation, migration, and differentiation were investigated in SHSY-5Y cells and IPSCs.Results: Significant downregulation of NRG1 and RET expression was noticed in the aganglionic segment of HSCR patients and SHSY-5Y cells with rs2439302 GG/rs2435357 TT genotype. NRG1 and RET double mutants caused the most severe reduction in enteric neuron numbers than NRG1 single mutant or RET single mutant in the hindgut of zebrafish. SHSY-5Y cells and IPSCs with rs2439302 GG/rs2435357 TT genotype exhibited a decreased proliferative, migration, and differentiative capacity. CTCF showed a considerably higher binding ability to SNP rs2439302 CC than GG. NRG1 reduction caused a further decrease in SOX10 expression via the PI3K/Akt pathway, which regulates RET expression by directly binding to rs2435357.Discussion: SNP rs2439302 (NRG1) GG increases the risk of developing HSCR by affecting the binding of transcription factor CTCF and interacting with rs2435357 (RET) to regulate RET expression via the PI3K/Akt/SOX10 pathway.

    وصف الملف: electronic resource