Functional characterization and organ distribution of three mitochondrial ATP–Mg/Pi carriers in Arabidopsis thaliana

التفاصيل البيبلوغرافية
العنوان: Functional characterization and organ distribution of three mitochondrial ATP–Mg/Pi carriers in Arabidopsis thaliana
المؤلفون: Lucia Daddabbo, Luigi Palmieri, Toshihiro Obata, Ferdinando Palmieri, Angelo Vozza, Alisdair R. Fernie, Magnus Monné, M. Cristina Nicolardi, Daniela Valeria Miniero
المصدر: Biochimica et Biophysica Acta (BBA) - Bioenergetics. (10):1220-1230
بيانات النشر: Elsevier B.V.
مصطلحات موضوعية: chemistry.chemical_classification, Membrane transport, Mitochondrial carrier, Biophysics, Arabidopsis, Cell Biology, Biology, Mitochondrion, biology.organism_classification, Biochemistry, Mitochondria, chemistry, Adenine nucleotide, Mitochondrial transporter, Arabidopsis thaliana, Nucleotide, ATP–ADP translocase, Inner mitochondrial membrane, ATP–Mg/phosphate carrier
الوصف: The Arabidopsis thaliana genome contains 58 membrane proteins belonging to the mitochondrial carrier family. Three members of this family, here named AtAPC1, AtAPC2, and AtAPC3, exhibit high structural similarities to the human mitochondrial ATP–Mg2 +/phosphate carriers. Under normal physiological conditions the AtAPC1 gene was expressed at least five times more than the other two AtAPC genes in flower, leaf, stem, root and seedlings. However, in stress conditions the expression levels of AtAPC1 and AtAPC3 change. Direct transport assays with recombinant and reconstituted AtAPC1, AtAPC2 and AtAPC3 showed that they transport phosphate, AMP, ADP, ATP, adenosine 5′-phosphosulfate and, to a lesser extent, other nucleotides. AtAPC2 and AtAPC3 also had the ability to transport sulfate and thiosulfate. All three AtAPCs catalyzed a counter-exchange transport that was saturable and inhibited by pyridoxal-5′-phosphate. The transport activities of AtAPCs were also inhibited by the addition of EDTA or EGTA and stimulated by the addition of Ca2 +. Given that phosphate and sulfate can be recycled via their own specific carriers, these findings indicate that AtAPCs can catalyze net transfer of adenine nucleotides across the inner mitochondrial membrane in exchange for phosphate (or sulfate), and that this transport is regulated both at the transcriptional level and by Ca2 +.
اللغة: English
تدمد: 0005-2728
DOI: 10.1016/j.bbabio.2015.06.015
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7ca4ed54748164b2a7aa5e750c33e8f4Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....7ca4ed54748164b2a7aa5e750c33e8f4
قاعدة البيانات: OpenAIRE
الوصف
تدمد:00052728
DOI:10.1016/j.bbabio.2015.06.015