دورية أكاديمية

Genome-wide association study identifies acyl-lipid metabolism candidate genes involved in the genetic control of natural variation for seed fatty acid traits in Brassica napus L.

التفاصيل البيبلوغرافية
العنوان: Genome-wide association study identifies acyl-lipid metabolism candidate genes involved in the genetic control of natural variation for seed fatty acid traits in Brassica napus L.
المؤلفون: Gazave, Elodie, Tassone, Erica E., Baseggio, Matheus, Cryder, Michelle, Byriel, Kelli, Oblath, Emily, Lueschow, Shiloh, Poss, Dave, Hardy, Cody, Wingerson, Megan, Davis, James B., Abdel-Haleem, Hussein, Grant, David M., Hatfield, Jerry L., Isbell, Terry A., Vigil, Merle F., Dyer, John M., Jenks, Matthew A., Brown, Jack, Gore, Michael A., Pauli, Duke
المساهمون: Univ Arizona, Sch Plant Sci
المصدر: Industrial Crops and Products ; 145 ; 112080
بيانات النشر: ELSEVIER
سنة النشر: 2020
المجموعة: The University of Arizona: UA Campus Repository
مصطلحات موضوعية: Fatty acid metabolism, Renewable fuel, Pathway candidate genes, Whole genome prediction, Plant improvement
الوصف: Brassica napus L. represents a potential plant feedstock for the sustainable production of hydrotreated renewable fuels needed to support carbon-based energy production. However, to increase the use of plant-derived oils for energy needs, breeding efforts are required to optimize the amount and profile of fatty acids (FAs) contained in the oil extracted from B. maims seed to meet demands of the various market categories. To this end, we analyzed the genetic basis of FA content and composition of seed from a diverse panel of spring-type B. napus accessions evaluated at four US locations across multiple years. The extent of phenotypic variations for total oil content, nine FA compounds, and 14 derivative traits were found, in general, to be highly heritable. A genome-wide association study (GWAS) was conducted that detected 53 SNPs significantly associated with one or more of the 24 FA seed traits, resulting in the implicated genetic role of 12 candidate genes, four of which had two homologs each, from the acyl-lipid pathway. To our knowledge, the two detected homologs of 3-Ketoacyl-CoA thiolase (KAT), have never been associated with seed oil traits in B. napus. Through the application of whole-genome prediction, the 24 FA seed traits were generally found to have moderately high predictive abilities (70% of traits with abilities > 0.70), suggesting that these traits are highly amenable to genomic selection. Overall, our results contribute to the expanding body of knowledge regarding key enzymes in the acyl-lipid pathway at the quantitative genetic level and illustrate how genomics-assisted breeding could be leveraged to genetically improve FA seed traits in B. napus. ; 24 month embargo; published online: 6 January 2020 ; This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 0926-6690
العلاقة: Gazave, E., Tassone, E. E., Baseggio, M., Cryder, M., Byriel, K., Oblath, E., … Pauli, D. (2020). Genome-wide association study identifies acyl-lipid metabolism candidate genes involved in the genetic control of natural variation for seed fatty acid traits in Brassica napus L. Industrial Crops and Products, 145, 112080. https://doi.org/10.1016/j.indcrop.2019.112080Test ‌; http://hdl.handle.net/10150/641026Test; INDUSTRIAL CROPS AND PRODUCTS; S0926669019310908
DOI: 10.1016/j.indcrop.2019.112080
الإتاحة: https://doi.org/10.1016/j.indcrop.2019.112080Test
http://hdl.handle.net/10150/641026Test
حقوق: Copyright © 2019 Elsevier B.V. All rights reserved. ; http://rightsstatements.org/vocab/InC/1.0Test/
رقم الانضمام: edsbas.A573070C
قاعدة البيانات: BASE
الوصف
تدمد:09266690
DOI:10.1016/j.indcrop.2019.112080