يعرض 1 - 10 نتائج من 62 نتيجة بحث عن '"Rodríguez, Sara"', وقت الاستعلام: 1.03s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Institut Jean Lamour (IJL), Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Universidad de Alicante, Institut universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), ANR-15-IDEX-0004,LUE,Isite LUE(2015)

    المصدر: ISSN: 0021-9797.

  2. 2
    دورية أكاديمية

    وصف الملف: 12 páginas; application/pdf

    العلاقة: 12; 180; Tribology International; [1] Haosheng C, Jiadao W, Darong C. Cavitation damages on solid surfaces in suspensions containing spherical and irregular microparticles. Wear 2009;266: 345–8.; [2] Hu H, Zheng Y. The effect of sand particle concentrations on the vibratory cavitation erosion. Wear 2017;384:95–105.; [3] Huang S, Ihara A, Watanabe H, Hashimoto H. Effects of solid particle properties on cavitation erosion in solid-water mixtures. J Fluids Eng 1996;118:749–55.; [4] Romero R, Teran L, Coronado J, Ladino J, Rodríguez S. Synergy between cavitation and solid particle erosion in an ultrasonic tribometer. Wear 2019;428:395–403.; [5] Yan D, Wang J, Liu F. Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures. AIP Adv 2015;5:077159.; [6] Amarendra H, Chaudhari G, Nath S. Synergy of cavitation and slurry erosion in the slurry pot tester. Wear 2012;290:25–31.; [7] Amarendra H, Hallalli GB, Madhusudhana G, Mahendra H, Athani MK. Effect of cavitation inducers’ apex angle on erosion; [8] Thapa B, Chaudhary P, Dahlhaug OG, Upadhyay P. Study of combined effect of sand erosion and cavitation in hydraulic turbines. Int Conf Small HydropowerHydro Sri Lanka 2007:24.; [9] K. Su, D. Xia, Z. Ding, Cavitation damage in particle-laden liquids with considering particle concentration and size, 22nd IAHR-APD Congress, Sapporo, Japan, 2020.; [10] Franc J-P, Michel J-M. Fundamentals of cavitation. Springer Science & Business Media,; 2006.; [11] Jayaprakash A, Hsiao C-T, Chahine G. Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall. J Fluids Eng 2012;134: 031301.; [12] Kim K-H, Chahine G, Franc J-P, Karimi A. Advanced experimental and numerical techniques for cavitation erosion prediction. Springer,; 2014.; [13] Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles. J Fluid Mech 1998;361:75–116.; [14] Zhang A, Cui P, Wang Y. Experiments on bubble dynamics between a free surface and a rigid wall. Exp Fluids 2013;54:1602.; [15] Soh W, Willis B. A flow visualization study on the movements of solid particles propelled by a collapsing cavitation bubble. Exp Therm Fluid Sci 2003;27:537–44.; [16] Arora M, Ohl C-D, Mørch KA. Cavitation inception on microparticles: a selfpropelled particle accelerator. Phys Rev Lett 2004;92:174501.; [17] Wu S, Zuo Z, Stone HA, Liu S. Motion of a free-settling spherical particle driven by a laser-induced bubble. Phys Rev Lett 2017;119:084501.; [18] Poulain S, Guenoun G, Gart S, Crowe W, Jung S. Particle motion induced by bubble cavitation. Phys Rev Lett 2015;114:214501.; [19] Teran LA, Laín S, Jung S, Rodríguez SA. Surface damage caused by the interaction of particles and a spark-generated bubble near a solid wall. Wear 2019;438: 203076.; [20] Teran LA, Rodríguez SA, Laín S, Jung S. Interaction of particles with a cavitation bubble near a solid wall. Phys Fluids 2018;30:123304.; [21] Plesset MS, Chapman RB. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 1971;47:283–90.; [22] Chahine GL, Hsiao C-T. Modelling cavitation erosion using fluid–material interaction simulations. Interface Focus 2015;5:20150016.; [23] Johnsen E, Colonius T. Numerical simulations of non-spherical bubble collapse. J Fluid Mech 2009;629:231–62.; [24] Osterman A, Dular M, Sirok B. Numerical simulation of a near-wall bubble collapse in an ultrasonic field. J Fluid Sci Technol 2009;4:210–21.; [25] Schnerr GH, Sauer J. Physical and numerical modeling of unsteady cavitation dynamics. Fourth Int Conf Multiph Flow, ICMF N Orleans 2001.; [26] Supponen O, Obreschkow D, Kobel P, Farhat M. Detailed jet dynamics in a collapsing bubble, Journal of Physics. Conf Ser, IOP Publ 2015:012038.; [27] Li S. Cavitation enhancement of silt erosion—an envisaged micro model. Wear 2006;260:1145–50.; [28] Dunstan P, Li S. Cavitation enhancement of silt erosion: Numerical studies. Wear 2010;268:946–54.; [29] Teran LA, Laín S, Rodríguez SA. Synergy effect modelling of cavitation and hard particle erosion: Implementation and validation. Wear 2021;478:203901.; [30] Li S, Li L. Computational investigation of baffle influence on windage loss in helical geared transmissions. Tribology Int 2021;156:106852.; [31] ANSYS, Fluent Theory Guide, Release 16.1, ANSYS, Inc., Canonsburg, 2015.; [32] Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys 1992;100:335–54.; [33] Teran LA, Larrahondo FJ, Rodríguez SA. Performance improvement of a 500-kW Francis turbine based on CFD. Renew Energy 2016;96:977–92.; [34] ANSYS, Fluent User’s Guide, Release 16.1, ANSYS, Inc., Canonsburg, 2015.; [35] Ghobadian A, Vasquez S. A general purpose implicit coupled algorithm for the solution of eulerian multiphase transport equation. Int Conf Multiph Flow, Leipz, Ger 2007.; [36] Zambrano O, García D, Rodríguez S, Coronado J. The mild-severe wear transition in erosion wear. Tribology Lett 2018;66:95.; [37] Teran L, Roa C, Munoz-Cubillos ˜ J, Aponte R, Valdes J, Larrahondo F, Rodríguez S, Coronado J. Failure analysis of a run-of-the-river hydroelectric power plant. Eng Fail Anal 2016;68:87–100.; Laín Beatove, S.; Teran, L. A.; Rodríguez, S. A. (2023). Prediction of the particle’s impact velocity due to the bubble–particle interaction causing synergic wear. Tribology International. volume 180. p.p. 1-12. https://doi.org/10.1016/j.triboint.2023.108261Test; https://hdl.handle.net/10614/15549Test; https://doi.org/10.1016/j.triboint.2023.108261Test; Universidad Autónoma de Occidente; Respositorio Educativo Digital UAO; https://red.uao.edu.coTest/

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: Institut Jean Lamour (IJL), Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Universitat d'Alacant, TALiSMAN project (2019-000215) , financed by the European Regional Development Fund (ERDF), MICINN and ERDF (project RTI2018-095291-B-I00), ANR-15-IDEX-0004,LUE,Isite LUE(2015)

    المصدر: ISSN: 0008-6223 ; Carbon ; https://hal.univ-lorraine.fr/hal-03842598Test ; Carbon, 2022, 196, pp.708-717. ⟨10.1016/j.carbon.2022.05.032⟩.

  5. 5
    دورية أكاديمية

    المساهمون: Institut Jean Lamour (IJL), Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Energétique et Mécanique Théorique et Appliquée (LEMTA ), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Carbon Nanostructures and Nanotechnology Group (ICB-CSIC), Carbon Nanostructures and Nanotechnology Group, TALiSMAN project - ERDF, MCIN/AEI, ANR-15-IDEX-0004,LUE,Isite LUE(2015)

    المصدر: ISSN: 0008-6223 ; Carbon ; https://hal.univ-lorraine.fr/hal-03786953Test ; Carbon, 2022, 189, pp.349-361. ⟨10.1016/j.carbon.2021.12.078⟩.

  6. 6
    دورية أكاديمية

    المساهمون: European Commission, Ministerio de Economía, Industria y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Pérez Rodríguez, Sara, Sebastián del Río, David, Alegre Gresa, Cinthia, Tsoncheva, T., Paneva, D., Lázaro Elorri, María Jesús

    العلاقة: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RyC-2016-20944; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/IJCI-2017-32354; Publisher's version; http://dx.doi.org/10.1016/j.electacta.2021.138490Test; Sí; Electrochimica Acta 387: 138490 (2021); http://hdl.handle.net/10261/242159Test; http://dx.doi.org/10.13039/501100000780Test; http://dx.doi.org/10.13039/501100010198Test

  7. 7
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    المساهمون: Département de Chimie Moléculaire - Bioélectrochimie pour les capteurs, l’énergie et les nanomatériaux (DCM - BioCEN), Département de Chimie Moléculaire (DCM), Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), ANR-20-CE05-0006,CAGEZYMES,Nanoconfinement d'enzymes dans des architectures nanocages pour la conversion bioélectrocatalytique d'énergie(2020)

    المصدر: ISSN: 0956-5663 ; Biosensors and Bioelectronics ; https://hal.science/hal-03376324Test ; Biosensors and Bioelectronics, 2021, 187, pp.113304. ⟨10.1016/j.bios.2021.113304⟩.

  10. 10
    دورية أكاديمية

    المساهمون: Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Gobierno de Aragón, Pérez Rodríguez, Sara, Sebastián del Río, David, Lázaro Elorri, María Jesús

    العلاقة: #PLACEHOLDER_PARENT_METADATA_VALUE#; ENE2017-83976-C2-1-R/AEI/10.13039/501100011033; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/ENE2017-83976-C2-1-R; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RYC-2016-20944; Preprint; http://dx.doi.org/10.1016/j.electacta.2019.02.065Test; Sí; Electrochimica Acta 303: 167-175 (2019); http://hdl.handle.net/10261/184512Test; http://dx.doi.org/10.13039/501100010067Test; http://dx.doi.org/10.13039/501100011033Test