يعرض 1 - 10 نتائج من 27 نتيجة بحث عن '"Mineral Physics"', وقت الاستعلام: 1.28s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
  4. 4
  5. 5
  6. 6
    دورية أكاديمية

    المؤلفون: Pappalardo, L., Mastrolorenzo, G.

    المساهمون: Pappalardo, L., Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia, Mastrolorenzo, G.

    العلاقة: Earth and Planetary Science Letters; /296 (2010); Appleton, J.D., 1972. Petrogenesis of potassium rich lavas from the Roccamonfina volcano Roman Region, Italy. J. Petrol. 13, 425–456. Armienti, P., Francalanci, L., Landi, P., 2007. Textural effects of steady state behavior of the Stromboli feeding system. J. Volcanol. Geoth. Res. 160 (1–2), 86–98. Auger, E., Gasparini, P., Virieux, J., Zollo, A., 2001. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294, 1510–1512. Berrino, G., Corrado, G., Riccardi, U., 1998. Sea gravity data in the Gulf of Naples: a contribution to delineating the structural pattern of the Vesuvian area. J. Volcanol. Geoth. Res. 82, 139–150. Bianco, F., Castellano, M., Milano, G., Ventura, G., Vilardo, G., 1998. The Somma– Vesuvius stress-field induced by regional tectonic: evidences from seismological and mesostructural data. J. Volcanol. Geoth. Res. 82, 199–218. Blundy, J., Cashman, K., 2008. Petrologic reconstruction of magmatic system variables and processes. Rev. Mineralog. Geochem. 69-1, 179–239. Boudreau, A.E., 1999. PELE - A version of the MELTS software program for the PC platform. Computers and Geosciences 25, 21–203. Brocchini, D.C., Principe, D., Castradori, M., Laurenzi, A., Gorla, L., 2001. Quaternary evolution of the southern sector of the Campanian Plain and early Somma– Vesuvius activity: insights from the Trecase 1 well. Miner. Petrol. 73, 67–91. Calzolaio, M., Arzilli, F., Carroll, M.R., Piochi, M., 2008. Study of the growth rate in decompression-induced experiments of alkali feldspars in trachytic melts of Phlegrean Fields (Napoli, Italy). Congresso Società Italiana di Mineralogia e Petrologia (SIMP) e Associazione Italiana di Cristallografia (AIC), Sestri Levante (GE, Italy), il 9 settembre 2008. Carroll, M.R., 2005. Chlorine solubility in evolved alkaline magmas. Ann. Geophys. 48, 619–631. Carroll, M.R., Blank, J., 1997. Solubility of water in phonolitic melts. Am. Mineralog. 82, 1111–1115. Cashman, K.V., Marsh, B.D., 1988. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake. Contrib. Mineralog. Petrol. 99, 292–305. Cashman, K.V., 1993. Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib. Mineralog. Petrol. 113, 126–142. Cioni, R., 2000. Volatile content and degassing processes in the ad 79 magma chamber at Vesuvius (Italy). Contrib. Mineralog. Petrol. 140, 40–54. Couch, S., 2003. Experimental investigation of crystallization kinetics in a haplogranite system. Am. Mineralog. 88, 1471–1485. De Natale, G., Troise, C., Pingue, F., Mastrolorenzo, G., Pappalardo, L., 2006. The Somma– Vesuvius volcano (Southern Italy): structure, dynamics and hazard evaluation. Earth Sci. Rev. 74, 73–111. Di Renzo, V., Di Vito, M.A., Arienzo, I., Carandente, A., Civetta, L., D'antonio, M., Giordano, F., Orsi, G., Tonarini, S., 2007. Magmatic history of Somma–Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). J. Petrol. 48 (4), 753–784. Eberl, D.D., Kile, D.E., Drits, V.A., 2002. On geological interpretations of crystal size distributions: constant vs. proportionate growth. Am. Mineralog. 87, 1235–1241. Fabbrizio, A., Schmidt, M.W., Günther, D., Eikenberg, J., 2008. Experimental determination of radium partitioning between leucite and phonolite melt and 226Ra crystallization ages of leucite. Chem. Geol. 255, 377–387. Fowler, S.J., Spera, F.J., Bohrson, W.A., Belkin, H.E., De Vivo, B., 2007. Phase equilibria constraints on the chemical and physical evolution of the Campanian ignimbrite. J. Petrol. 48, 459–493. Fulignati, P., Marianelli, P., 2007. Tracing volatile exsolution within the 472 ad 'Pollena' magma chamber of Vesuvius (Italy) from melt inclusion investigation. J. Volcanol. Geoth. Res. 161, 289–302. Geschwind, C.H., Rutherford, M.J., 1995. Crystallization of microlites during magma ascent: the fluid mechanism of 1980–1986 eruption at Mount St Helens. Bull. Volcanol. 57, 356–370. Ghiorso, M.S., Sack, R.O., 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineralog. Petrol. 119, 197–212. Gualda, G.A.R., 2006. Crystal size distributions derived from 3D datasets: sample size versus uncertainties. J. Petrol. 47, 1245–1254. Hammer, E., Cashman, K.V., Hoblit, R.P., Newman, S., 1999. Degassing and microlite crystallization during pre-climatic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull. Volcanol. 60, 355–380. Hammer, J.E., Rutherford, M.J., 2002. Magma storage prior to the 1912 eruption at Novarupta, Alaska. Contrib. Mineralog. Petrol. 144, 144–162. Hammer, J.E., Cashman, K.V.,Voight, B., 2000.Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J. Volcanol. Geoth. Res. 100, 165–192. Higgins, M.D., 1996. Magma dynamics beneath Kameni volcano, Greece, as revealed by crystal size and shape measurements. J. Volcanol. Geoth. Res. 70, 37–48. Higgins, M.D., 2000. Measurement of crystal size distributions. Am. Mineralog. 85, 1105–1116. Higgins, M.D., 2002. Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. Am. Mineralog. 87, 171–175. Higgins, M.D., 2006. Quantitative Textural Measurements in Igneous and Metamorphic Petrology. Cambridge University Press, Cambridge. Higgins, M.D., Roberge, J., 2007. Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: evidence from plagioclase crystal size distribution (CSD) and geochemistry. J. Volcanol. Geoth. Res. 161, 247–260. Higgins, M.D., Meilleur, D., 2009. Development and emplacement of the Inyo Domes Magmatic Suite, California: evidence from geological, textural (CSD) and geochemical observations of ash and lava. Journal of Volcanology and Geothermal Research 186, 280–292. Houghton, B.F., Wilson, C.J.N., 1989. A vesicularity index for pyroclastic deposits. Bull. Volcanol. 51, 451–462. Improta, L., Corciulo, M., 2006. Controlled source nonlinear tomography: a powerful tool to constrain tectonic models of the Southern Apennines orogenic wedge, Italy. Geology 34, 941–944. Jerram, D.A., Higgins, M.D., 2007. 3D analysis of rock textures: quantifying igneous microstructures. Elements 3 (4), 239–245. Kirkpatrick, R.J., Klein, L., Uhlmann, D.R., Hays, J.F., 1979. Rates and processes of crystal growth in the system anorthite-albite. J. Geophys. Res. 84, 3671–3676. Larsen, J.F., 2005. Experimental study of plagioclase rim growth around anorthite seed crystals in rhyodacitic melt:. Am. Mineralog. 90, 417–427. Le Bas, M.J., Le Maitre, R.W., Streckheisen, A., Zanettin, B., 1986. Chemical classification of volcanic rocks based on the total alkali–silica diagram. J. Petrol. 27, 745–750. Lofgren, G., 1980. Experimental studies on the dynamic crystallization of silicate melts. In: Hargraves, R.B. (Ed.), Physics of Magmatic Processes. Princeton University Press, New York, pp. 487–565. Mangan, M.T., 1990. Crystal size distribution systematics and the determination of magma storage times: the 1959 eruption of Kilauea volcano, Hawaii. J. Volcanol. Geoth. Res. 44, 295–302. Marianelli, P., Sbrana, A., Metrich, N., Cecchetti, A., 2005. The deep feeding system of Vesuvius involved in the recent violent strombolian eruptions. Geophys. Res. Lett. 32. doi:10.1029/2004GL021667. Marsh, B., 1988. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contrib. Mineralog. Petrol. 99, 277–291. Marsh, B.D., 1998. On the interpretation of crystal size distributions in magmatic systems. Journal of Petrology 39, 553–599. Martel, C., Schmidt, B.C., 2003. Decompression experiments as an insight into ascent rates of silicic magmas. Contrib. Mineralog. Petrol. 144, 397–415. Mastrolorenzo, G., Pappalardo, L., 2006. Magma degassing and crystallization processes during eruptions of high-risk Neapolitan volcanoes: evidence of common equilibrium rising processes in alkaline magmas. Earth Planet. Sci. Lett. 250, 164–181. Mastrolorenzo, G., Petrone, P., Pappalardo, L., Sheridan, M.F., 2006. The Avellino 3780- yr- B.P. catastrophe as a worst-case scenario for a future eruption at Vesuvius. PNAS 103 (12), 4366–4370. Mock, A., Jerram, D.A., 2005. Crystal size distributions (CSD) in three dimensions: insights from the 3D reconstruction of a highly porphyritic rhyolite. J. Petrol. 46, 1525–1541. Morgan, D.J., Blake, S. and Rogers, N.W., 2003. Crystallization rate and residence times of sanidine phenocrysts in the AD 472 (Pollena) eruption of Vesuvius. Geophysical Research Abstracts, Vol. 5, 09352, European Geophysical Society 2003. Morgan, J.S., Bohrson, W.A., Clynne, M.A., Ramos, F.C., Hoskin, P., 2008. Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA. J. Petrol. 49 (10), 1755–1780. Orlando, A., D'Orazio, M., Armienti, P., Borrini, D., 2008. Experimental determination of plagioclase and clinopyroxene crystal growth rates in an anhydrous trachybasalt from Mt Etna (Italy). Eur. J. Mineralog. 20 (4), 653–664. Pappalardo, L., Piochi, M., Mastrolorenzo, G., 2004. The 3800 yr BP–1944 AD magma plumbing system of Somma–Vesuvius: constraints on its behavior and present state through a review of isotope data. Ann Geophys. 47, 1471–1483. Pappalardo, L., Ottolini, L., Mastrolorenzo, G., 2008. The Campanian Ignimbrite (Southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contrib. Mineralog. Petrol. 156, 1–26. Randolf, A.D., Larson, M.A., 1971. Theory of Particulate Processes. Academic Press, NewYork. Resmini, R.G., Marsh, B.D., 1995. Steady-state volcanism, paleoeffusion rates, and magma system volume inferred from plagioclase crystal size distributions in mafic lavas: Dome Mountain, Nevada. J. Volcanol. Geoth. Res. 68, 273–296. Scheibner, B., Wörner, G., Civetta, L., Stosc, H.G., Simon, K., Kronz, A., 2007. Rare earth element fractionation in magmatic Ca-rich garnets. Contrib. Mineralog. Petrol. 154, 55–74. Scheibner, B., Heumann, A., Wörner, G., Civetta, L., 2008. Crustal residence times of explosive phonolite magmas: U–Th ages of magmatic Ca-Garnets of Mt. Somma– Vesuvius (Italy). Earth Planet. Sci. Lett. 276 (3–4), 293–301. Signorelli, S., Carroll, M.R., 2000. Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts. Geochim. Cosmochim. Acta 64, 2851–2862. Webster, J.D., De Vivo, B., Tappen, C., 2003. Volatiles, magmatic degassing and eruptions of Mt. Somma–Vesuvius: constraints from silicate melt inclusions, solubility experiments and modeling. In: De Vivo, B., Bodnar, R.J. (Eds.), Melt Inclusions in Volcanic Systems: Methods, Applications and Problems. Developmens in Volcanology: Elsevier Book Series, vol. 5, pp. 207–226. Zieg, M.J., Lofgren, G.E., 2006. An experimental investigation of texture evolution during continuous cooling. J. Volcanol. Geoth. Res. 154, 74–88.; http://hdl.handle.net/2122/6653Test

  7. 7
    دورية أكاديمية

    المساهمون: Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), University of Edinburgh (Edin.), Geophysical Laboratory Carnegie Institution, Carnegie Institution for Science, Département de Physique Théorique et Appliquée (DPTA), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)

    المصدر: ISSN: 0031-9201.

    العلاقة: hal-00613646; https://hal.science/hal-00613646Test

  8. 8
    دورية أكاديمية

    المساهمون: Pittarello, L., Università degli Studi di Padova, Di Toro, G., Bizzarri, A., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia, Pennacchioni, G., Hadizadeh, J., Department of Geography & Geosciences, University of Louisville, Louisville, Kentucky, Cocco, M., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#

    العلاقة: Earth and Planetary Science Letters; /269 (2008); http://hdl.handle.net/2122/4638Test; http://abierre.df.unibo.itTest

  9. 9
    دورية أكاديمية

    المساهمون: Gaspar, M., Departamento de Geologia da Faculdade de Cieˆncias/CREMINER, Universidade de Lisboa, Campo Grande, Edı´ficio C6, Piso 4, Sala 6.4.48, 1749-016 Lisboa, Portugal, Knaack, C., Department of Geology, Washington State University, P.O. Box. 642812, Pullman, WA 99164-2812, USA, Meinert, L. D., Department of Geology, Smith College, Northampton, MA 01063, USA, Moretti, R., Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia

    العلاقة: Geochimica et Cosmochimica Acta; 1/72 (2008); Aines R. D. and Rossman G. R. (1984) Water content of mantle garnets. Geology 12, 720–723. Akizuki M. (1984) Origin of optical variations in grossular– andradite garnet. Am. Mineral. 69, 328–338. Akizuki M. (1989) Growth structure and crystal symmetry of grossular garnets from the Jeffrey mine, Asbestos, Quebec, Canada. Am. Mineral. 74, 859–864. Allen F. M. and Buseck P. R. (1988) XRD, FTIR, and TEM studies of optically anisotropic grossular garnets. Am. Mineral. 73, 568–584. Allen D. E. and Seyfried W. E. (2005) REE controls in ultramafic hosted MOR hydrothermal systems: an experimental study at elevated temperature and pressure. Geochim. Cosmochim. Acta 69, 675–683. Ayers J. C. and Eggler D. H. (1995) Partitioning of elements between silicate melt and H2O-NaCl fluids at 1.5 and 2.0 GPa pressure: implications for mantle metasomatism:. Geochim. Cosmochim. Acta 59, 4237–4246. Bai T. B. and Koster van Groos A. F. (1999) The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochim. Cosmochim. Acta 63, 1117–1131. Ballaran T. B., Carpenter M. A. and Geiger C. A. (1999) Local structural heterogeneity in garnet solid solutions. Phys. Chem. Miner. 26, 554–569. Bau M. (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid–rock interaction and the significance of the oxidation state of europium. Chem. Geol. 93, 219–230. Bea F., Pereira M. D. and Stroh A. (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol. 117, 291–312. Bea F., Montero P., Garuti G. and Zacharini F. (1997) Pressuredepende of rare earth element distribution in amphibolite and granulite-grade garnets. A LA-ICP-MS study. Geostandard Newslett. 21, 253–270. Becker U. and Pollok K. (2002) Molecular simulations of interfacial and thermodynamic mixing properties of grossular–andradite garnets. Phys. Chem. Miner. 29, 52–64. Blanc Y. and Maisonneuve J. (1973) Sur la birefringence des grenats calciques. Bull. Soc. Fr. Mineral. Crystallogr. 96, 320–321. Blichert-Toft J., Albare`de F. and Kornprobst J. (1999) Lu-Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morroco: Implications for basalt origin. Science 283, 1303–1306. Boyd F. R., Pearson D. G., Hoal K. O., Hoal B. G., Nixon P. H., Kingston M. J. and Mertzman S. A. (2004) Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos 77, 573–592. Chase A. B. and Lefever R. A. (1960) Birefringence of synthetic garnets. Am. Mineral. 45, 1126–1129. Chernoff C. B. and Carlson W. D. (1999) Trace element zoning as a record of chemical disequilibrium during garnet growth. Geology 27, 555–558. Ciobanu C. L. and Cook N. J. (2004) Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geol. Rev. 24, 315–370. Cohen-Addad C., Ducros P. and Bertaut E. F. (1967) Etude de la substitution du groupement SiO4 par (OH)4 dans les compose`s Al2Ca3(OH)12 et Al2Ca3(SiO4)2.16(OH)3.36 de type grenet. Acta Crystallogr. 23, 220–230. Douville E., Bienvenu P., Charlou J., Donval J., Fouquet Y., Appriou P. and Gamo T. (1999) Ytrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim. Cosmochim. Acta 63, 627–643. Ducheˆne S., Blichert-Toft J., Luais B., Te´louk P., Lardeaux J. M. and Albare`de F. (1997) The Lu–Hf dating of garnets and ages of the Alpine high pressure metamorphism. Nature 387, 586–589. Einaudi M. T., Meinert L. D. and Newberry R. J. (1981) Skarn deposits. Econ. Geol. 75th Anniversary Volume, 317–391. Flynn R. T. and Burnham W. (1978) An experimentaldetermination of rare earth partition coefficients between a chloride containing vapour phase and silicate melts. Geochim. Cosmochim. Acta 42, 685–701. Gaspar, M. (2005) The Crown Jewel gold skarn deposit. Ph.D. Thesis, Washington State University. Available from: http:// griffin.wsu.edu/. Geiger C. A., Winkler B. and Langer K. (1989) Infrared spectra of synthetic almandine–grossular and almandine–pyrope garnet solid solutions: evidence for equivalent site behaviour:. Mineral. Mag. 53, 231–237. Graunch R. I. (1989) Rare earth elements in metamorphic rocks. In Geochemistry and Mineralogical Rare Earth Elements: Rev. Mineral (eds. B. R. Lipin and G. A. Mckay), pp. 146–167. vol. 21. Mineralogical Society of America. Griffen D. T., Hatch D. M., Phillips W. R. and Kulaksiz S. (1992) Crystal chemistry and symmetry of a birefringent tetragonal pyralspiter75-grandite25 garnet. Am. Mineral. 77, 399–406. Haas J. R., Shock E. L. and Sassani D. C. (1995) Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–5350. Halden N. M. (1996) Determination of Lyapounov exponents to characterize the oscillatory distribution of trace elements in minerals. Can. Mineral. 34, 1127–1135. Harris N. B. W., Gravestock P. and Inger S. (1992) Ion-microprobe determinations of trace-element concentrations in garnets from anatectic assemblages. Chem. Geol. 100, 41–49. Hatch D. M. and Griffen D. T. (1989) Phase transitions in the grandite garnets. Am. Mineral. 74, 151–159. Helgeson H. C. and Kirkham D. H. (1976) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: III. Equation of state for aqueous species at infinite dilution. Am. J. Sci. 276, 97–240. Helgeson H. C., Kirkham D. H. and Flowers G. C. (1974a) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: I. Summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci. 274, 1089–1198. Helgeson H. C., Kirkham D. H. and Flowers G. C. (1974b) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: II. Debye–Hu¨ckel parameters for activity coefficients and relative partial molal properties. Am. J. Sci. 274, 1199–1261. Helgeson H. C., Kirkham D. H. and Flowers G. C. (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 C and 5 kb. Am. J. Sci. 281, 1249–1516. Hickey, R. J. I., (1990) The Geology of the Buckhorn Mountain Gold Skarn, Okanogan County, Washington. M.Sc. Thesis, Washington State University. Hickey R. J. I. (1992) The Buckhorn Mountain (Crown Jewel) gold skarn deposit, Okanogan County, Washington. Econ. Geol. 87, 125–141. Hickmott D. D. and Spear F. S. (1992) Major-and trace-element zoning in garnets from calcareous pelites in the NW Shelburne Falls Quadrangle, Massachusetts: garnet growth histories in retrograded rocks. J. Petrol. 33, 965–1005. Hoal K. E. O., Hoal B. G., Erlank A. J. and Shimizu N. (1994) Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets. Earth Planet. Sci. Lett. 126, 303–313. Hofmeister A. M., Schaal R. B., Campbell K. R., Berry S. L. and Fagan T. J. (1998) Prevalence and origin of birefringence in 48 garnets from the pyrope–almandine–grossularite–spessartine quaternary. Am. Mineral. 83, 1293–1301. Jamtveit B. (1991) Oscillatory zonation patterns in hydrothermal grossular–andradite garnet. Nonlinear dynamics in regions of immiscibility. Am. Mineral. 76, 1319–1327. Jamtveit B. and Hervig R. L. (1994) Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals. Science 263, 505–508. Jamtveit B., Wogelius R. A. and Fraser D. G. (1993) Zonation patterns of skarn garnets: records of hydrothermal system evolution. Geology 21, 113–116. Johnson J. W., Oelkers E. H. and Helgeson H. C. (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000 C. Computers & Geosciences 8, 899–947. Jones, D. M. (1992) Preliminary Geology and Exploration Potential of the Crown Jewel project, Okanogan County, Washington. Internal Report, Battle Mountain Exploration Company, Tucson, Arizona, p. 26. Kingma K. J. and Downs J. W. (1989) Crystal-structure of a birefringent andradite. Am. Mineral. 74, 1307–1316. Kitamura K. and Komatsu H. (1978) Optical anisotropy associated with growth striation of yttrium garnet, Y3(Al,Fe)5O12. Kristall. Technik. 13, 811–816. Klinkhammer G. P., Elderfield H., Edmond J. M. and Mitra A. (1994) Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim. Cosmochim. Acta 58, 5105–5113. Knittle E., Hawthorne A., Davis M. and Williams Q. (1992) A spectroscopy study of high-pressure behaviour of the O4H4 substitution in garnet. In High Pressure Research: Application to Earth and Planetary Sciences (eds. Y. Syono and M.Manghnani). Terrapub/Am. Geophys. Union, Tokyo, pp. 297–304. Korzhinskii D. S. (1968) The theory of metasomatic zoning. Miner. Deposita. 3, 222–231. Korzhinskii D. S. (1970) Theory of Metasomatic Zoning. Clarendon Press, Oxford. Kravchuk I. F., Ivanova G. F., Varezhkina N. S. and Malinin S. D. (1995) REE fractionation in acid fluid-magma systems. Geochem. Intern. 32, 60–68. Lessing P. and Standish R. P. (1973) Zoned garnet from Crested Butte, Colorado. Am. Mineral. 58, 840–842. Lottermoser B. G. (1992) Rare earth elements and hydrothermal ore formation processes. Ore Geol. Rev. 7, 25–41. Mayanovic R. A., Jayanetti S., Anderson A. J., Bassett W. A. and Chou I-M. (2002) The structure of Yb3+ aquo ion and chloro complexes in aqueous solutions at up to 500 C and 270 MPa. J. Phys. Chem. A 106, 6591–6599. Mayanovic R. A., Anderson A. J., Bassett W. A. and Chou I-M. (2007) On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aquo and chloro complexes. Chem. Geol. 239, 266–283. McAloon B. P. and Hofmeister A. M. (1993) Single-crystal absorption and reflection infrared spectroscopy of birefringent grossular–andradite garnets. Am. Mineral. 78, 957–967. McDonough W. F. and Sun S.-S. (1995) The composition of the Earth. Chem. Geol. 120, 223–253. McIntire W. L. (1963) Trace element partition coefficients—a review of theory and applications to geology. Geochim. Cosmochim. Acta 27, 1209–1264. Mckay G. A. (1989) Partition of rare earth elements between major silicate minerals and basaltic melts. In Geochemistry and Mineralogy of Rare Earth Elements: Rev. Mineral (eds. B. R. Lipin and G. A. Mckay), pp. 45–78. vol. 21. Mineralogical Society of America. Meagher E. P. (1982) Silicate garnets. In Orthosilicates: Rev Mineral (ed. P. H. Ribbe), pp. 25–66. vol. 5. Mineralogical Society of America. Meinert L. D. (1992) Skarns and skarn deposits. Geosci. Can. 19, 145–162. Meinert L. D. (1997) Application of skarn deposit zonation models to mineral exploration. Explor. Min. Geol. 6, 185–208. Meinert L. D., Dipple G. M. and Nicolescu S. (2005) World skarn deposits. Econ. Geol. 100th Anniversary Volume, 299–336. Menzer G. (1926) Die kristallstructure von granat. Zeitschift fu¨ r Kristallographie 63, 157–158. Mezger K., Essene E. J. and Halliday A. N. (1992) Closure temperatures of the Sm–Nd system in metamorphic garnets. Earth. Planet. Sci. Lett. 113, 397–409. Michard A. (1989) Rare earth element systematics in hydrothermal fluids. Geochim. Chosmochim. Acta 53, 745–750. Michard A. and Albare`de F. (1986) The REE content of some hydrothermal fluids. Chem. Geol. 55, 51–60. Mills R. A. and Elderfield H. (1995) Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26 NMid-Atlantic Ridge. Geochim. Cosmochim. Acta 59, 3511– 3524. Moretti R. and Ottonello G. (1998) An appraisal of endmember energy and mixing properties of the rare earth garnets. Geochim. Cosmochim. Acta 62, 1147–1173. Nakano T., Takahara H. and Norimasa N. (1989) Intracrystalline distribution of major elements in zoned garnet from skarn in the Chichibu mine, central Japan; illustration by color-coded maps. Can. Mineral. 27, 499–507. Nicolescu S., Cornell D. H., So¨dervall U. and Odelius H. (1998) Secondary ion mass spectrometry analysis of rare earth elements in grandite garnet and other skarn related silicates. Eur. J. Mineral. 10, 251–259. Ottonello G. and Moretti R. (1998) On the significance of static interactions in silicate garnets. J. Phys. Chem. Solid 59, 893–901. Ottonello G., Bokreta M. and Sciuto P. F. (1996) Parameterization of energy and interactions in garnets: end-member properties. Am. Mineral. 81, 429–447. Pawlak D., Wozniak K. and Frukacz Z. (1999) Correlation between structural parameters of garnet and garnet-like structures. Acta Crystallaogr. B55, 736–744. Prince C. I., Kosler J., Vance D. and Gu¨nther D. (2000) Comparison of laser ablation ICP-MS and isotope dilution REE analyses—implications for Sm–Nd garnet geochronology. Chem. Geol. 168, 255–274. Reed M. J., Candela P. A. and Piccoli P. M. (2000) The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800 C and 200 MPa. Contrib. Mineral. Petrol. 140, 251–262. Rossman G. R. and Aines R. D. (1986) Birefringent grossular from Asbestos, Quebec, Canada. Am. Mineral. 71, 779–780. Rossman G. R. and Aines R. D. (1991) The hydrous components in garnets: grossular–hydrogrossular. Am. Mineral. 76, 1153–1164. Scherer E. E., Cameron K. L. and Blichert-Toft J. (2000) Lu–Hf garnet geochronology: closure temperature relative to the Sm– Nd system and the effects of trace mineral inclusions. Geochim. Cosmochim. Acta 64, 3413–3432. Scherer E. E., Cameron K. L., Johnson C. M., Beard B. L., Barovich K. M. and Collerson K. D. (1997) Lu-Hf geochronology applied to dating Cenozoic events affecting lower crustal xenoliths from Kilbourne Hole, New Mexico. Chem. Geol. 142, 63–78. Schwandt C. S., Papike J. J., Shearer C. K. and Brearley A. J. (1993) A SIMS investigation of REE chemistry of garnet in garnetite associated with the Broken Hill Pb–Zn–Ag orebodies, Australia. Can. Mineral. 31, 371–379. Shannon R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and calcogenides. Acta Crystallogr. A32, 751–767. Shannon R. D. and Prewitt C. T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr. B25, 925–946. Shimizu N. and Sobolev N. V. (1995) Young peridotitic diamonds from the Mir kimberlite pipe. Nature 375, 394–397. Shore M. and Fowler A. D. (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral. 34, 1111–1126. Skublov S. G. and Drugova G. M. (2000) REE distribution in metamorphic garnets. Herald DGGGMS RAS 2, 60–61. Smith M. P., Henderson P., Jeffries T. E. R., Long J. and Williams C. T. (2004) The rare earth elements and uranium in garnets from the Beinn and Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system. J. Petrol. 45, 457–484. Stiles C. A., Jones D. M., Neal W. S., Truckle D. M., Penick M. J. and Senter L. E. (1995) Economic geology of the Crown Jewel gold skarn deposit, Okanogan County, Washington. Battle Mountain Exploration Company Report, 21. Sverjensky D. M. (1984) Europium redox equilibria in aqueous solution. Earth Planet. Sci. Lett. 67, 70–78. Take´uchi Y. and Haga N. (1976) Optical anomaly and structure of silicate garnets. Proc. Jap. Acad. 52, 228–231. Urabe, T., Sakagawa, M., Nakano, T., Kamioka, H. (1992) Partitioning of REE between granitic melt and vapor and generation of REE-bearing pegmatite: 29th IGC, Kyoto, Japan, p. 242 (abstract). van Westrenen W., Allan N. L., Blundy J. D., Lavrentiev M. Y., Lucas B. R. and Purton J. A. (2003) Dopant incorporation into garnet solid solutions-a breakdown of Goldschmidt’s first rule. Chem. Commun., 786–787. van Westrenen W., Allan N. L., Blundy J. D., Purton J. A. and Wood B. J. (2000) Atomistic simulation of trace element incorporation into garnets-comparison with experimental garnet- melt partitioning data. Geochim. Cosmochim. Acta 64, 1629–1639. van Westrenen W., Blundy J. D. and Wood B. J. (1999) Crystalchemistry controls on trace element partitioning between garnet and anhydrous melt. Am. Mineral. 84, 838–847. van Westrenen W., Wood B. J. and Blundy J. D. (2001) A predictive thermodynamic model of garnet-melt trace element partitioning. Contrib. Mineral. Petrol. 142, 219–234. Whitney P. R. and Olmsted J. F. (1998) Rare earth element metasomatism in hydrothermal systems: the Willsboro-Lewis wollastonite ores, New York, USA. Geochim. Cosmochim. Acta 62, 2965–2977. Wood S. A. (1990) The aqueous geochemistry of the rare earth elements and yttrium. Part I. Review of available low temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 82, 159–186. Wood, S. A. (2003) The geochemistry of rare earth elements and yttrium in geothermal waters. In Volcanic, Geothermal, and Ore-Forming Fluids: Rulersand Witnesses of Processes within the Earth (eds. S. F. Simmons and I. Graham). Soc. Econ. Geol. Spec. Publ, 10, pp. 133–158. Yardley B. W., Rochelle C. A., Barnicoat A. C. and Lloyd G. E. (1991) Oscillatory zoning in metamorphic minerals: an indicator of infiltration metasomatism. Min. Mag. 55, 357–365. Zhang H., Menzies M. A., Lu F. and Zhou X. (2000) Major and trace element studies on garnets from Paleozoic kimberliteborne mantle xenoliths and megacrysts from the North China craton. Sci. China D43, 423–430.; http://hdl.handle.net/2122/3250Test

  10. 10
    دورية أكاديمية

    المساهمون: Di Matteo, V., Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia, Mangiacapra, A., Dingwell, D. B., Department of Earth and Environmental Science, University of Munich, Theresienstr. 41/III 80333 München, Germany, Orsi, G.

    وصف الملف: 387108 bytes; application/pdf

    العلاقة: Chemical Geology; 1-2/229 (2006); Bartholomew, R.F., Butler, B.L., Hoover, H.L., Wu, C.K., 1980. Infrared spectra of a water containing glass. J. Am. Ceram. Soc. 63, 481–485. Behrens, H., 1995. Determination of water solubities in high-viscosity melts: an experimental study on NaAlSi3O8. Eur. J. Mineral. 7, 905–920. Behrens, H., Jantos, N., 2001. The effect of anhydrous composition on water solubility in granitic melts. Am. Mineral. 86, 14–20. Behrens, H., Nowak, M., 2003. Quantification of H2O speciation in silicate glasses and melts by IR spectroscopy—in situ versus quench techniques. Phase Transit. 76 (1–2), 45–61. Behrens, H., Stuke, A., 2003. Quantification of H2O contents in silicate glasses using IR spectroscopy—a calibration based on hydrous glasses analyzed by Karl–Fischer titration. Glass Sci. Technol. 76, 176–189. Blank, J.G., Stolper, E.M., Carroll, M.R., 1993. Solubilities of carbon dioxide and water in rhyolitic melt at 850 °C and 750 bars. Earth Planet. Sci. Lett. 119, 27–36. Burnham, C.W., 1974. NaAlSi3O8–H2O solutions: a thermodynamic model for hydrous magmas. Bull. Soc. Fr. Mineral. Cristallogr. 97, 223–230. Burnham, C.W., 1975.Water and magmas: a mixing model. Geochim. Cosmochim. Acta 39, 1077–1084. Burnham, C.W., Davis, N.F., 1971. The role of H2O in silicate melts: I. PVT reltions in the system NaAlSi3O8–H2O to 10 kilobars and 1000 °C. Am. J. Sci. 270, 54–79. Burnham, C.W., Davis, N.F., 1974. The role of H2O in silicate melts: II. Thermodynamic and phase relations in the system NaAlSi3O8– H2O to 10 kbars 700 °C–1100 °C. Am. J. Sci. 274, 902–940. Carroll, M.R., Blank, J.G., 1997. The solubility of H2O in phonolitic melts. Am. Mineral. 82, 1111–1115. Cecchetti, A., Marianelli, P., Sbrana, A., 2001. A deep magma chamber beneath Campi Flegrei? Insights from melt inclusions. GNVFramework Program 2000–2002: 1 year results. Oss. Vesuv. 59–65. D'Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., et al., 1999. The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka. J. Volcanol. Geotherm. Res. 91, 247–268. Dingwell, D.B., Webb, S.L., 1990. Relaxation in silicate melts. Eur. J. Mineral. 2, 427–449. Dingwell, D.B., Harris, D.M., Scarfe, C.M., 1984. The solubility of H2O in melts in the system SiO2–Al2O3–Na2O–K2O at 1 to 2 kbars. J. Geol. 92, 387–395. Dingwell, D.B., Romano, C., Hess, K.U., 1996. The effect of water on viscosity of a haplogranitic melt at P–T–X conditions relevant to silicic volcanism. Contrib. Mineral. Petrol. 124, 19–28. Dingwell, D.B., Holtz, F., Bherens, H., 1997. The solubility of H2O in peralkaline and peraluminous melts. Am. Mineral. 82, 434–437. Di Vito, M.A., Isaia, R., Orsi, G., Southon, J., de Vita, S., D'Antonio, M., et al., 1999. Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka. J. Volcanol. Geotherm. Res. 91, 221–246. Dixon, T.E., Stolper, E., Holloway, J.R., 1995. An experimental study of water and carbon dioxide solubilities in mid-ocean basalt liquids: Part I. Calibration and solubility models. J. Petrol. 36, 1607–1631. Eggler, D.H., 1972. Water-saturated and water-undersaturated melting relations in a Paricutin andesite and an estimate of water content in natural magma. Contrib. Mineral. Petrol. 34, 261–271. Gaillard, F., Scaillet, M.B., Pichavant, M., Bény, J.M., 2001. The effect of water and fO2 on the ferric–ferrous ratio of silicic melts. Chem. Geol. 174, 255–273. Goranson, R.W., 1931. The solubility of water in granitics magmas. Am. J. Sci. 22, 481–502. Goranson, R.W., 1936. Silicate–water systems: the solubility of water in albite-melt. Trans.-Am. Geophys. Union 17, 257–259. Hamilton, D.L., Burnham, C.W., Osborn, E.F., 1964. The solubility of water and effects on fugacity and water content on crystallization in mafic magmas. J. Petrol. 5, 21–39. Holtz, F., Behrens, H., Dingwell, D.B., Taylor, R.P., 1992. Water solubility in aluminosilicate melts of haplogranite composition at 2 kbar. Chem. Geol. 96, 289–302. Holtz, F., Behrens, H., Dingwell, D.B., Wilhelm, J., 1995. H2O solubility in haplogranitic melts: compositional, pressure and temperature dependence. Am. Mineral. 80, 94–108. Keppler, H., Bagdassarov, N.S., 1993. High-temperature FTIR spectra of H2O in rhyolite melt to 1300 °C. Am. Mineral. 78, 1324–1327. Kohn, S.C., Dupree, R., Golam Mortuza, M., 1992. The interaction between water and aluminosilicate magmas. Chem. Geol. 96, 399–409. Kushiro, I., 1972. Effect of water on the composition of magmas formed at high pressures. Am. J. Sci. 267A, 269–294. Kushiro, I., 1978. Density and viscosity of hydrous calc-alkalic andesite magma at high pressure. Year B.-Carnegie Inst.Wash. 77, 675–678. Lange, R.A., Carmichael, I.S.E., 1987. Densities of Na2O-K2O-CaOMgO- FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: new measurements and derived partial molar properties. Geochim. Cosmochim. Acta 51 (11), 2931–2946. Lebedev, E.E., Khitarov, N.I., 1964. The dependence of electrical conductivity of granite melt and the beginning of granite melting on high pressure of water. Geokhimiya 3, 195–201 (in Russian). McMillan, P.F., 1994. Water solubility and speciation models. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in Magmas. Rev. Miner., vol. 30, p. 517. Moore, G., Vennemann, T., Carmichael, I.S.E., 1995. Solubility of water in magmas to 2 kilobars. Geology 23, 1099–1102. Moore, G., Vennemann, T., Carmichael, I.S.E., 1998. An empirical model for the solubility of H2O in magmas to 3 kilobars. Am. Mineral. 83, 36–42. Newman, S., Stolper, E.M., Epstein, S., 1986. Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. Am. Mineral. 71, 1527–1541. Nowak, M., Berhens, H., 1995. The speciation of water in haplogranitic glasses and melts determined by in situ near-infrared spectroscopy. Am. Mineral. 59 (16), 3445–3450. Nowak, M., Berhens, H., 2001. Water in rhyolitic magmas: getting a grip on a slippery problem. Earth Planet. Sci. Lett. 184, 515–522. Nowak, M., Berhens, H., Johannes, W., 1996. A new type of hightemperature, high pressure cell for spectroscopic studies of hydrous silicate melts. Am. Mineral. 81, 1507–1512. Ohlhorst, S., Behrens, H., Holtz, F., 2001. Compositional dependence of molar absorptivities of near-infrared OH- and H2O bands in rhyolitic to basaltic glasses. Chem. Geol. 174, 5–20. Orlova, G.P., 1962. The solubility of water in albite melts. Int. Geol. Rev. 6 (1964), 254–258. Osborn, E.F., 1959. The role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am. J. Sci. 257, 609–647. Ostroviskiy, I.A., Orlova, G.P., Rudnitskaya, Y.S., 1964. Stoichiometry in the solution of water in alkali-aluminosilicate melts. Dokl. Akad. Nauk SSR 157, 149–151. Papale, P., 1997. Thermodynamic modeling of the solubility of H2O and CO2 in silicate liquids. Contrib. Mineral. Petrol. 126, 237–251. Pappalardo, L., Piochi, M., D'Antonio, M., Civetta, L., Petrini, R., 2002. Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J. Petrol. 43 (8), 1415–1434. Richet, P., Lejeune, A.M., Holtz, F., Roux, J., 1996. Water and the viscosity of andesite melts. Chem. Geol. 128, 185–197. Richet, P., Whittington, A., Holtz, F., Behrens, H., Ohlhorst, S.,Wilke, M., 2000. Water and the density of silicate glasses. Contrib. Mineral. Petrol. 138, 337–347. Rosi, M., Sbrana, A., 1987. Phlegrean fields. CNR, Quad. Ric. Sci. 114, 1–175. Rossman, G.R., 1988. Optical spectroscopy. In: Hatworne, F.C. (Ed.), Spectroscopic methods in Mineralogy and Geology. Rev. Mineral., vol. 18, pp. 207–243. Schmidt, B.C., Riemer, T., Kohn, S.C., Behrens, H., Dupree, R., 2000. Different water solubility mechanism in hydrous glasses along the Qz–Ab join: evidence from NMR spectroscopy. Geochim. Cosmochim. Acta 64 (3), 513–526. Schmidt, B.C., Riemer, T., Kohn, S.C., Holtz, F., Dupree, R., 2001. Structural implications of water dissolution in haplogranitic glasses from NMR spectroscopy: influence of total water content and mixed alkali effect. Geochim. Cosmochim. Acta 65 (17), 2949–2964. Scholze, H., 1960. Zur Frage der Unterscheidung zwischen H2OMolekelen und OH-Gruppen in Gläsern und Mineralen. Naturwissenschaften 47, 226–227. Shen, A., Keppler, H., 1995. Infrared spectroscopy of hydrous silicate melts to 1000 °C and 10 kbar—direct observation of H2O speciation in a diamond-anvil cell. Am. Mineral. 80, 1335–1338. Silver, L.A., Ihinger, P.D., Stolper, E., 1990. The influence of bulk composition on the speciation of water in silicate glasses. Contrib. Mineral. Petrol. 104, 142–162. Stolper, E., 1982a. The speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620. Stolper, E., 1982b. Water in silicate glasses: an infrared spectroscopy study. Contrib. Mineral. Petrol. 81, 1–17. Tamic, N., Behrens, H., Holtz, F., 2001. The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2–H2O fluid phase. Chem. Geol. 174, 333–347. Watson, E.B., 1994. Diffusion in volatile-bearing magmas. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in Magmas. Rev. Miner., vol. 30, pp. 371–411. Whiters, A.C., Zhang, Y., Behrens, H., 1999. Reconciliation of experimental results on H2O speciation in rhyolitic glass using insitu and quenching techniques. Earth Planet. Sci. Lett. 173, 343–349. Yamashita, S., Kitamura, T., Kusakabe, M., 1997. Infrared spectroscopy of hydrous glasses of arc magma composition. Geochem. J. 31, 169–174. Yoder Jr., H.S., 1969. Calc-alkalic andesites: experimental data bearing on the origin of their assumed characteristics. In: McBirney, A.R. (Ed.), Proceedings of the Andesite Conference. Or. Dep. Geol. Miner. Ind. Bull., vol. 65, pp. 77–89. Yoder Jr., H.S., 1973. Contemporaneous basaltic and rhyolitic magmas. Am. Mineral. 58, 153–171. Zeng, Q., Nekvasil, H., Grey, C.P., 2000. In support of a depolymerization model for water in sodium aluminosilicate glasses: information from NMR spectroscopy. Geochim. Cosmochim. Acta 64 (5), 883–896. Zhang, Y., 1999. H2O in rhyolitic glasses and melts: measurement, speciation, solubility and diffusion. Rev. Geophys. 37, 493–516. Zhang, Y., Stolper, E.M., Ihinger, P.D., 1995. Kinetics of the reaction H2O+O=2OH in rhyolitic and albitic glasses: preliminary study. Am. Mineral. 80, 593–612.; http://hdl.handle.net/2122/2241Test; www.siencedirect.com